Skip to main content

Advertisement

Log in

Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

In recent years, bimetallic and trimetallic nanoparticles (NPs) have become attractive materials for many researchers especially in the field of catalysis due to their interesting physical and chemical properties. These unique properties arise mainly from simultaneous effects of two different metal atoms in their structure. In this review, recent theoretical studies on these NPs using molecular dynamics simulation are presented. Since investigation of thermodynamic stabilities of metallic NPs is a critical factor in their construction for catalytic applications, our focus in this review is on the thermal stability of bimetallic and trimetallic NPs. The melting behavior of these materials with different atomic arrangements including core–shell, three-shell, crown-jewel, ordered and disordered alloy, and Janus materials are discussed. Other factors including stress, strain, atomic radius, thermal expansion coefficient, cohesive energy, surface energy, size, composition, and morphology are described in detail, because these properties lead to complexity in the melting behavior of bimetallic and trimetallic NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang J, Yuan Q, Liu Y, Huang X, Qiao Y, Lu J, Song C (2019) Low-cost ternary Ni–Fe–P catalysts supported on Ni foam for hydrolysis of ammonia borane. Inorg Chem Front 6:1189–1194

    Article  CAS  Google Scholar 

  2. Yao Q, He M, Hong X, Zhang X, Lu Z-H (2019) MoO x-modified bimetallic alloy nanoparticles for highly efficient hydrogen production from hydrous hydrazine. Inorg Chem Front 6:1546–1552

    Article  CAS  Google Scholar 

  3. Song X, Yang P, Wang J, Zhao X, Zhou Y, Li Y, Yang L (2019) NiFePd/UiO-66 nanocomposites as highly efficient catalysts to accelerate hydrogen evolution from hydrous hydrazine. Inorg Chem Front 6:2727–2735

    Article  CAS  Google Scholar 

  4. Ni T, Zhang H, Zhang S (2019) Room-temperature hydrogen generation from water and nanoscale Fe catalyzed by Pd. Inorg Chem Front 6:257–262

    Article  CAS  Google Scholar 

  5. Yin H-J, Zhou J-H, Zhang Y-W (2019) Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. Inorg Chem Front 6:2582–2618

    Article  CAS  Google Scholar 

  6. Long C, Wang K, Shi Y, Yang Z, Zhang X, Zhang Y, Han J, Bao Y, Chang L, Liu S (2019) Tuning the electronic structure of PtRu bimetallic nanoparticles for promoting the hydrogen oxidation reaction in alkaline media. Inorg Chem Front 6:2900–2905

    Article  CAS  Google Scholar 

  7. Chu Z, Chen L, Wang X, Yang Q, Zhao Q, Huang C, Huang Y, Yang D-P, Jia N (2019) Ultrasmall Au–Ag alloy nanoparticles: protein-directed synthesis. Biocompatibility, and X-ray computed tomography imaging. ACS Biomater Sci Eng 5:1005–1015

    Article  CAS  PubMed  Google Scholar 

  8. Rizo RN, Roldan Cuenya B (2019) Shape-controlled nanoparticles as anodic catalysts in low-temperature fuel cells. ACS Energy Lett 4:1484–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner AP, Patra HK (2019) A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun 55:6964–6996

    Article  CAS  Google Scholar 

  10. Liu X, Chen X, Ju J, Wang X, Mei Z, Qu H, Xu Y, Zeng X (2019) Platinum-nickel bimetallic nanosphere-ionic liquid interface for electrochemical oxygen and hydrogen sensing. ACS Appl Nano Mater 2:2958–2968

    Article  CAS  Google Scholar 

  11. Fahmy HM, Mosleh AM, Elghany AA, Shams-Eldin E, Serea ESA, Ali SA, Shalan AE (2019) Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv 9:20118–20136

    Article  CAS  Google Scholar 

  12. Liao T-W, Yadav A, Ferrari P, Niu Y, Wei X-K, Vernieres J, Hu K-J, Heggen M, Dunin-Borkowski PRE, Palmer RE (2019) Composition-tuned Pt-skinned PtNi bimetallic clusters as highly efficient methanol dehydrogenation catalysts. Chem Mater 31:10040–10048

    Article  CAS  Google Scholar 

  13. Zheng J, Zeng H, Tan C, Zhang T, Zhao B, Guo W, Wang H, Sun Y, Jiang L (2019) Coral-like PdCu alloy nanoparticles act as stable electrocatalysts for highly efficient formic acid oxidation. ACS Sustain Chem Eng 7:15354–15360

    Article  CAS  Google Scholar 

  14. Artiga Á, Serrano-Sevilla I, De Matteis L, Mitchell SG, Jesús M (2019) Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J Mater Chem B 7:876–896

    Article  CAS  PubMed  Google Scholar 

  15. Weber M, Kim J-Y, Lee J-H, Kim J-H, Iatsunskyi I, Coy E, Miele P, Bechelany M, Kim SS (2019) Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires. J Mater Chem A 7:8107–8116

    Article  CAS  Google Scholar 

  16. Liang S, Chen S, Guo Z, Lan Z, Kobayashi H, Yan X, Li R (2019) In situ generated electron-deficient metallic copper as the catalytically active site for enhanced hydrogen production from alkaline formaldehyde solution. Catal Sci Technol 9:5292–5300

    Article  CAS  Google Scholar 

  17. Luo L, He H, Li C, He Y, Hao Z, Wang S, Zhao Q, Liu Z, Gao D (2019) Near-infrared responsive bimetallic nanovesicles for enhanced synergistic chemophotothermal therapy. ACS Biomater Sci Eng 5:1321–1331

    Article  CAS  PubMed  Google Scholar 

  18. Guo K, Ding Y, Luo J, Gu M, Yu Z (2019) NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: composition-dependent activity and support size effect. ACS Appl Energy Mater 2:5851–5861

    Article  CAS  Google Scholar 

  19. Wu R, Li Y, Gong W, Shen PK (2019) One-pot synthesis of Pt–Pd bimetallic nanodendrites with enhanced electrocatalytic activity for oxygen reduction reaction. ACS Sustain Chem Eng 7:8419–8428

    Article  CAS  Google Scholar 

  20. Manchala S, Nagappagari LR, Venkatakrishnan SM, Shanker V (2019) Solar-light harvesting bimetallic Ag/Au decorated graphene plasmonic system with efficient photoelectrochemical performance for the enhanced water reduction process. ACS Appl Nano Mater 2:4782–4792

    Article  CAS  Google Scholar 

  21. Davydova E, Speck FD, Paul MT, Dekel DR, Cherevko S (2019) Stability limits of Ni-based hydrogen oxidation electrocatalysts for anion exchange membrane fuel cells. ACS Catal 9:6837–6845

    Article  CAS  Google Scholar 

  22. Huang J, Mensi M, Oveisi E, Mantella V, Buonsanti R (2019) Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J Am Chem Soc 141:2490–2499

    Article  CAS  PubMed  Google Scholar 

  23. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309

    Article  CAS  Google Scholar 

  24. Grunes J, Zhu J, Somorjai GA (2003) Catalysis and nanoscience. Chem Commun 20:2257–2260

    Article  Google Scholar 

  25. Rolison DR (2003) Catalytic nanoarchitectures–the importance of nothing and the unimportance of periodicity. Science 299:1698–1701

    Article  CAS  PubMed  Google Scholar 

  26. Schlögl R, Abd Hamid SB (2004) Nanocatalysis: mature science revisited or something really new? Angew Chem Int Ed 43:1628–1637

    Article  Google Scholar 

  27. Somorjai GA, Contreras AM, Montano M, Rioux RM (2006) Clusters, surfaces, and catalysis. Proc Natl Acad Sci USA 103:10577–10583

    Article  CAS  PubMed  Google Scholar 

  28. Wan X, Zhou C, Chen J, Deng W, Zhang Q, Yang Y, Wang Y (2014) Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2, 5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au–Pd alloy nanoparticles. ACS Catal 4:2175–2185

    Article  CAS  Google Scholar 

  29. Toshima N (2000) Core/shell-structured bimetallic nanocluster catalysts for visible-light-induced electron transfer. Pure Appl Chem 72:317–325

    Article  CAS  Google Scholar 

  30. Kim Y, Hong JW, Lee YW, Kim M, Kim D, Yun WS, Han SW (2010) Synthesis of AuPtheteronanostructures with enhanced electrocatalytic activity toward oxygen reduction. Angew Chem Int Ed 49:10197–10201

    Article  CAS  Google Scholar 

  31. Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic Au@ Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem Mater 22:6310–6318

    Article  CAS  Google Scholar 

  32. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333

    Article  CAS  PubMed  Google Scholar 

  33. Alayoglu S, Eichhorn B (2008) Rh− Pt bimetallic catalysts: synthesis, characterization, and catalysis of core−shell, alloy, and monometallic nanoparticles. J Am Chem Soc 130:17479–17486

    Article  CAS  PubMed  Google Scholar 

  34. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core–shell nanoparticles. Science 322:932–934

    Article  CAS  PubMed  Google Scholar 

  35. Lim B, Xia Y (2011) Metal nanocrystals with highly branched morphologies. Angew Chem Int Ed 50:76–85

    Article  CAS  Google Scholar 

  36. Koenigsmann C, Santulli AC, Gong K, Vukmirovic MB, Zhou W-P, Sutter E, Wong SS, Adzic RR (2011) Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J Am Chem Soc 133:9783–9795

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Nemoto Y, Yamauchi Y (2011) Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J Am Chem Soc 133:9674–9677

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez SI, Small MW, Zuo J-M, Nuzzo RG (2009) Structural characterization of Pt−Pd and Pd−Pt core−shell nanoclusters at atomic resolution. J Am Chem Soc 131:8683–8689

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Yamauchi Y (2010) Controlled aqueous solution synthesis of platinum–palladium alloy nanodendrites with various compositions using amphiphilic triblock copolymers. Chem Asian J 5:2493–2498

    Article  CAS  PubMed  Google Scholar 

  40. Abdelsayed V, Glaspell G, Nguyen M, Howe JM, El-Shall MS (2008) Laser synthesis of bimetallic nanoalloys in the vapor and liquid phases and the magnetic properties of PdM and PtM nanoparticles (M= Fe, Co and Ni). Faraday Discuss 138:163–180

    Article  CAS  PubMed  Google Scholar 

  41. Binder WH (2005) Supramolecular assembly of nanoparticles at liquid–liquid interfaces. Angew Chem Int Ed 44:5172–5175

    Article  CAS  Google Scholar 

  42. Li X, Kiran B, Li J, Zhai HJ, Wang LS (2002) Experimental observation and confirmation of icosahedral W@ Au12 and Mo@ Au12 molecules. Angew Chem Int Ed 41:4786–4789

    Article  CAS  Google Scholar 

  43. Neukermans S, Janssens E, Chen Z, Silverans R, Schleyer PVR, Lievens P (2004) Extremely stable metal-encapsulated AlPb 10+ and AlPb 12+ clusters: mass-spectrometric discovery and density functional theory study. Phys Rev Lett 92:163401

    Article  CAS  PubMed  Google Scholar 

  44. Rao CR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Metal nanoparticles and their assemblies. Chem Soc Rev 29:27–35

    Article  CAS  Google Scholar 

  45. Yin F, Wang ZW, Palmer RE (2011) Controlled formation of mass-selected Cu–Au core–shell cluster beams. J Am Chem Soc 133:10325–10327

    Article  CAS  PubMed  Google Scholar 

  46. Grammatikopoulos P, Steinhauer S, Vernieres J, Singh V, Sowwan M (2016) Nanoparticle design by gas-phase synthesis. Adv Phys-X 1:81–100

    CAS  Google Scholar 

  47. Delsante S, Borzone G, Novakovic R, Piazza D, Pigozzi G, Janczak-Rusch J, Pilloni M, Ennas G (2015) Synthesis and thermodynamics of Ag–Cu nanoparticles. Phys Chem Chem Phys 17:28387–28393

    Article  CAS  PubMed  Google Scholar 

  48. Akbarzadeh H, Shamkhali A, Mehrjouei E (2017) Ag–Au bimetallic nanoclusters formed from a homogeneous gas phase: a new thermodynamic expression confirmed by molecular dynamics simulation. Phys Chem Chem Phys 19:3763–3769

    Article  CAS  PubMed  Google Scholar 

  49. Akbarzadeh H, Abbaspour M, Mehrjouei E, Masoumi A (2017) Structural evolution of Pt/Pd nanoparticles in condensation process. J Mol Liq 248:822–829

    Article  CAS  Google Scholar 

  50. Akbarzadeh H, Abbaspour M, Masoumi A, Mehrjouei E (2017) Dynamical investigation of formation of NiPt nanoclusters in gas phase. J Mol Liq 240:221–224

    Article  CAS  Google Scholar 

  51. Akbarzadeh H, Taherkhani F, Mehrjouei E, Masoumi A (2017) Kinetics formation of bimetallic nanoalloys at different simulation times. J Mol Liq 240:468–475

    Article  CAS  Google Scholar 

  52. Abbaspour M, Akbarzadeh H, Valizadeh Z (2018) Au–Ir nanoalloy nucleation during the gas-phase condensation: a comprehensive MD study including different effects. Inorg Chem Front 5:1445–1457

    Article  CAS  Google Scholar 

  53. Chepkasov I, Gafner YY, Gafner S (2016) Changing of the shape and structure of Cu nanoclusters generated from a gas phase: MD simulations. J Aerosol Sci 91:33–42

    Article  CAS  Google Scholar 

  54. Zhao J, Singh V, Grammatikopoulos P, Cassidy C, Aranishi K, Sowwan M, Nordlund K, Djurabekova F (2015) Crystallization of silicon nanoclusters with inert gas temperature control. Phys Rev B 91:035419

    Article  Google Scholar 

  55. Liu X, Wen X, Hoffmann R (2018) Surface activation of transition metal nanoparticles for heterogeneous catalysis: what we can learn from molecular dynamics. ACS Catal 8:3365–3375

    Article  CAS  Google Scholar 

  56. Lindemann F (1910) Phys Z 11:609

    CAS  Google Scholar 

  57. Kizuka T, Ichinose H, Ishida Y (1997) Structure and hardness of nanocrystalline silver. J Mater Sci 32:1501–1507

    Article  CAS  Google Scholar 

  58. Sun J, Ma D, Zhang H, Liu X, Han X, Bao X, Weinberg G, Pfänder N, Su D (2006) Toward monodispersed silver nanoparticles with unusual thermal stability. J Am Chem Soc 128:15756–15764

    Article  CAS  PubMed  Google Scholar 

  59. Longo E, Cavalcante LS, Volanti DP, Gouveia A, Longo V, Varela JA, Orlandi MO, Andrés J (2013) Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag 2 WO 4 crystals. Sci Rep 3:1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Andrés J, Gracia L, Gonzalez-Navarrete P, Longo VM, Avansi W Jr, Volanti DP, Ferrer MM, Lemos PS, La Porta FA, Hernandes AC (2014) Structural and electronic analysis of the atomic scale nucleation of Ag on α-Ag 2 WO 4 induced by electron irradiation. Sci Rep 4:5391

    Article  PubMed  PubMed Central  Google Scholar 

  61. da Silva Pereira W, Andrés J, Gracia L, San-Miguel MA, da Silva EZ, Longo E, Longo VM (2015) Elucidating the real-time Ag nanoparticle growth on α-Ag 2 WO 4 during electron beam irradiation: experimental evidence and theoretical insights. Phys Chem Chem Phys 17:5352–5359

    Article  Google Scholar 

  62. Mansourian A, Paknejad SA, Zayats AV, Mannan SH (2016) Stereoscopic nanoscale-precision growth of free-standing silver nanorods by electron beam irradiation. J Phys Chem C 120:20310–20314

    Article  CAS  Google Scholar 

  63. Grouchko M, Roitman P, Zhu X, Popov I, Kamyshny A, Su H, Magdassi S (2014) Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nat Commun 5:2994

    Article  PubMed  Google Scholar 

  64. Grammatikopoulos P, Cassidy C, Singh V, Sowwan M (2014) Coalescence-induced crystallisation wave in Pd nanoparticles. Sci Rep 4:5779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jose-Yacaman M, Gutierrez-Wing C, Miki M, Yang D-Q, Piyakis K, Sacher E (2005) Surface diffusion and coalescence of mobile metal nanoparticles. J Phys Chem B 109:9703–9711

    Article  CAS  PubMed  Google Scholar 

  66. Lange A, Samanta A, Majidi H, Mahajan S, Ging J, Olson T, van Benthem K, Elhadj S (2016) Dislocation mediated alignment during metal nanoparticle coalescence. Acta Mater 120:364–378

    Article  CAS  Google Scholar 

  67. Da Silva EZ, Faccin GM, Machado TR, Macedo NG, de Assis M, Maya-Johnson S, Sczancoski JLC, Andrés J, Longo E, San-Miguel MA (2019) Connecting theory with experiment to understand the sintering processes of Ag nanoparticles. J Phys Chem C 123:11310–11318

    Article  Google Scholar 

  68. Pereira Z, Da Silva E (2011) Cold welding of gold and silver nanowires: a molecular dynamics study. J Phys Chem C 115:22870–22876

    Article  CAS  Google Scholar 

  69. Faccin GM, San-Miguel MA, Andres J, Longo E, Da Silva EZ (2017) Computational modeling for the Ag nanoparticle coalescence process: a case of surface plasmon resonance. J Phys Chem C 121:7030–7036

    Article  CAS  Google Scholar 

  70. Andrés J, Gouveia AF, Gracia L, Longo E, ManzeppiFaccin G, da Silva EZ, Pereira DH, San-Miguel MA (2018) Formation of Ag nanoparticles under electron beam irradiation: atomistic origins from first-principles calculations. Int J Quantum Chem 118:e25551

    Article  Google Scholar 

  71. Li M, Hou Q, Wang J (2017) A molecular dynamics study of coalescence of tungsten nanoparticles. Nucl Instrum Methods Phys Res B 410:171–178

    Article  CAS  Google Scholar 

  72. Cheng B, Ngan AH (2013) The crystal structures of sintered copper nanoparticles: a molecular dynamics study. Int J Plast 47:65–79

    Article  Google Scholar 

  73. Li Y, Kalia RK, Nakano A, Vashishta P (2013) Size effect on the oxidation of aluminum nanoparticle: multimillion-atom reactive molecular dynamics simulations. Int J Appl Phys 114:134312

    Article  Google Scholar 

  74. Xu J, Sakanoi R, Higuchi Y, Ozawa N, Sato K, Hashida T, Kubo M (2013) Molecular dynamics simulation of Ni nanoparticles sintering process in Ni/YSZ multi-nanoparticle system. J Phys Chem C 117:9663–9672

    Article  CAS  Google Scholar 

  75. Yang L, Gan X, Xu C, Lang L, Jian Z, Xiao S, Deng H, Li X, Tian Z, Hu W (2019) Molecular dynamics simulation of alloying during sintering of Li and Pb metallic nanoparticles. Comput Mater Sci 156:47–55

    Article  CAS  Google Scholar 

  76. Akbarzadeh H, Abbaspour M, Salemi S, Hasani M (2017) Coalescence process of gold/silver core–shell nanoparticles located on carbon nanotube and graphene surfaces. J Mol Liq 248:738–750

    Article  CAS  Google Scholar 

  77. Akbarzadeh H, Abbaspour M, Salemi S, Hasani M (2017) Effect of support on the coalescence between Ag@ Au nanoalloys using MD simulations. J Mol Liq 244:390–397

    Article  CAS  Google Scholar 

  78. Nelli D, Rossi G, Wang Z, Palmer RE, Ferrando R (2020) Structure and orientation effects in the coalescence of Au clusters. Nanoscale 12:7688–7699

    Article  CAS  PubMed  Google Scholar 

  79. Grammatikopoulos P, Sowwan M, Kioseoglou J (2019) Computational modeling of nanoparticle coalescence. Adv Theory Simul 2:1900013

    Article  Google Scholar 

  80. Grammatikopoulos P (2019) Atomistic modeling of the nucleation and growth of pure and hybrid nanoparticles by cluster beam deposition. Curr Opin Chem Eng 23:164–173

    Article  Google Scholar 

  81. Moulijn JA, Van Diepen A, Kapteijn F (2001) Catalyst deactivation: is it predictable?: what to do? Appl Catal A Gen 212:3–16

    Article  CAS  Google Scholar 

  82. Deng L, Hu W, Deng H, Xiao S, Tang J (2011) Au–Ag bimetallic nanoparticles: surface segregation and atomic-scale structure. J Phys Chem C 115:11355–11363

    Article  CAS  Google Scholar 

  83. Pirart J, Front A, Rapetti D, Andreazza-Vignolle C, Andreazza P, Mottet C, Ferrando R (2019) Reversed size-dependent stabilization of ordered nanophases. Nat Commun 10:1–7

    Article  CAS  Google Scholar 

  84. Sinfelt JH (1977) Catalysis by alloys and bimetallic clusters. Acc Chem Res 10:15–20

    Article  CAS  Google Scholar 

  85. Corain B, Schmid G, Toshima N (2011) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Amsterdam.

  86. Pawlow P (1909) The dependency of the melting point on the surface energy of a solid body. Z Phys Chem 65:545–548

    Article  CAS  Google Scholar 

  87. Calvo F (2015) Thermodynamics of nanoalloys. Phys Chem Chem Phys 17:27922–27939

    Article  CAS  PubMed  Google Scholar 

  88. Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  Google Scholar 

  89. Eryazici I, Moorefield CN, Newkome GR (2008) Square-planar Pd (II), Pt (II), and Au (III) terpyridine complexes: their syntheses, physical properties, supramolecular constructs, and biomedical activities. Chem Rev 108:1834–1895

    Article  CAS  PubMed  Google Scholar 

  90. El-Toni AM, Habila MA, Labis JP, Alothman ZA, Alhoshan M, Elzatahry AA, Zhang F (2016) Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 8:2510–2531

    Article  CAS  PubMed  Google Scholar 

  91. Gilroy KD, Ruditskiy A, Peng H-C, Qin D, Xia Y (2016) Bimetallic nanocrystals: syntheses, properties, and applications. Chem Rev 116:10414–10472

    Article  CAS  PubMed  Google Scholar 

  92. Wang X, Choi S-I, Roling LT, Luo M, Ma C, Zhang L, Chi M, Liu J, Xie Z, Herron JA (2015) Palladium–platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat Commun 6:7594

    Article  PubMed  PubMed Central  Google Scholar 

  93. Burns A, Ow H, Wiesner U (2006) Fluorescent core–shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35:1028–1042

    Article  CAS  PubMed  Google Scholar 

  94. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  95. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  PubMed  Google Scholar 

  96. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  PubMed  Google Scholar 

  97. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435

    Article  CAS  PubMed  Google Scholar 

  98. Penner RM (2000) Hybrid electrochemical/chemical synthesis of quantum dots. Acc Chem Res 33:78–86

    Article  CAS  PubMed  Google Scholar 

  99. Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168

    Article  CAS  Google Scholar 

  100. Mélinon P, Begin-Colin S, Duvail JL, Gauffre F, Boime NH, Ledoux G, Plain J, Reiss P, Silly F, Warot-Fonrose B (2014) Engineered inorganic core/shell nanoparticles. Phys Rep 543:163–197

    Article  Google Scholar 

  101. Huang R, Wen Y-H, Zhu Z-Z, Sun S-G (2012) Pt–Pd bimetallic catalysts: structural and thermal stabilities of core–shell and alloyed nanoparticles. J Phys Chem C 116:8664–8671

    Article  CAS  Google Scholar 

  102. Huang R, Wen Y-H, Zhu Z-Z, Sun S-G (2012) Two-stage melting in core–shell nanoparticles: an atomic-scale perspective. J Phys Chem C 116:11837–11841

    Article  CAS  Google Scholar 

  103. Wen Y-H, Huang R, Li C, Zhu Z-Z, Sun S-G (2012) Enhanced thermal stability of Au@ Pt nanoparticles by tuning shell thickness: insights from atomistic simulations. J Mater Chem 22:7380–7386

    Article  CAS  Google Scholar 

  104. Foster D, Pavloudis T, Kioseoglou J, Palmer R (2019) Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon. Nat Commun 10:1–8

    Article  CAS  Google Scholar 

  105. Huang R, Wen Y-H, Shao G-F, Sun S-G (2013) Insight into the melting behavior of Au–Pt core–shell nanoparticles from atomistic simulations. J Phys Chem C 117:4278–4286

    Article  CAS  Google Scholar 

  106. Huang R, Wen Y-H, Shao G-F, Zhu Z-Z, Sun S-G (2013) Thermal stability and shape evolution of tetrahexahedral Au–Pd core–shell nanoparticles with high-index facets. J Phys Chem C 117:6896–6903

    Article  CAS  Google Scholar 

  107. Wen Y-H, Huang R, Shao G-F, Sun S-G (2017) Thermal stability of Co–Pt and Co–Au core–shell structured nanoparticles: insights from molecular dynamics simulations. J Phys Chem Lett 8:4273–4278

    Article  CAS  PubMed  Google Scholar 

  108. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J Phys Chem 91:4950–4963

    Article  CAS  Google Scholar 

  109. Huang R, Shao G-F, Zhang Y, Wen Y-H (2017) Thermal stability of platinum-cobalt bimetallic nanoparticles: chemically disordered alloys, ordered intermetallics, and core–shell structures. ACS Appl Mater Interfaces 9:12486–12493

    Article  CAS  PubMed  Google Scholar 

  110. Huang R, Wen Y-H, Shao G-F, Sun S-G (2016) Atomic structure and thermal stability of Pt–Fe bimetallic nanoparticles: from alloy to core/shell architectures. Phys Chem Chem Phys 18:17010–17017

    Article  CAS  PubMed  Google Scholar 

  111. Mottet C, Rossi G, Baletto F, Ferrando R (2005) Single impurity effect on the melting of nanoclusters. Phys Rev Lett 95:035501

    Article  CAS  PubMed  Google Scholar 

  112. Akbarzadeh H, Mehrjouei E, Shamkhali AN, Abbaspour M, Salemi S, Kamrani M (2018) Au–Fe nanoparticles visited by MD simulation: structural and thermodynamic properties affected by chemical composition. New J Chem 42:9666–9675

    Article  CAS  Google Scholar 

  113. Akbarzadeh H, Mehrjouei E, Ramezanzadeh S, Izanloo C (2017) Ni-Co bimetallic nanoparticles with core–shell, alloyed, and Janus structures explored by MD simulation. J Mol Liq 248:1078–1095

    Article  CAS  Google Scholar 

  114. Wang L-L, Johnson DD (2009) Predicted trends of core−shell preferences for 132 late transition-metal binary-alloy nanoparticles. J Am Chem Soc 131:14023–14029

    Article  CAS  PubMed  Google Scholar 

  115. Akbarzadeh H, Abbaspour M, Mehrjouei E (2017) Au@ Pt and Pt@ Au nanoalloys in the icosahedral and cuboctahedral structures: which is more stable? J Mol Liq 242:1002–1017

    Article  CAS  Google Scholar 

  116. Akbarzadeh H, Abbaspour M, Mehrjouei E (2017) Competition between stability of icosahedral and cuboctahedral morphologies in bimetallic nanoalloys. Phys Chem Chem Phys 19:14659–14670

    Article  CAS  PubMed  Google Scholar 

  117. Oderji HY, Behnejad H, Ferrando R, Ding H (2013) System-dependent melting behavior of icosahedral anti-Mackay nanoalloys. RSC Adv 3:21981–21993

    Article  CAS  Google Scholar 

  118. Bochicchio D, Ferrando R (2012) Structure and thermal stability of AgCu chiral nanoparticles. Eur Phys J D 66:115

    Article  Google Scholar 

  119. Bochicchio D, Ferrando R (2010) Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi nanoalloys. Nano Lett 10:4211–4216

    Article  CAS  PubMed  Google Scholar 

  120. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  PubMed  Google Scholar 

  121. Alloyeau D, Ricolleau C, Mottet C, Oikawa T, Langlois C, Le Bouar Y, Braidy N, Loiseau A (2009) Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nat Mater 8:940

    Article  CAS  PubMed  Google Scholar 

  122. Tournus F, Blanc N, Tamion A, Hillenkamp M, Dupuis V (2011) Synthesis and magnetic properties of size-selected CoPt nanoparticles. J Magn Magn Mater 323:1868–1872

    Article  CAS  Google Scholar 

  123. Bian B, Laughlin DE, Sato K, Hirotsu Y (2000) Fabrication and nanostructure of oriented FePt particles. J Appl Phys 87:6962–6964

    Article  CAS  Google Scholar 

  124. Wen Y-H, Huang R (2019) Effect of chemical ordering on thermal stability of Pt−Co nanoparticles. J Phys Chem C 123:12007–12014

    Article  CAS  Google Scholar 

  125. Cheng D, Yuan S, Ferrando R (2013) Structure, chemical ordering and thermal stability of Pt–Ni alloy nanoclusters. J Phys Condens Matter 25:355008

    Article  PubMed  Google Scholar 

  126. Nelli D, Ferrando R (2019) Core–shell vs. multi-shell formation in nanoalloy evolution from disordered configurations. Nanoscale 11:13040–13050

    Article  CAS  PubMed  Google Scholar 

  127. Zhang H, Jin M, Wang J, Kim MJ, Yang D, Xia Y (2011) Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors. J Am Chem Soc 133:10422–10425

    Article  CAS  PubMed  Google Scholar 

  128. Baletto F, Mottet C, Ferrando R (2003) Growth of three-shell onionlike bimetallic nanoparticles. Phys Rev Lett 90:135504

    Article  CAS  PubMed  Google Scholar 

  129. Ferrer D, Torres-Castro A, Gao X, Sepulveda-Guzman S, Ortiz-Mendez U, Jose-Yacaman M (2007) Three-layer core/shell structure in Au−Pd bimetallic nanoparticles. Nano Lett 7:1701–1705

    Article  CAS  PubMed  Google Scholar 

  130. Akbarzadeh H, Mehrjouei E, Sherafati M, Shamkhali AN (2017) Dumbbell-like, core–shell and Janus-like configurations in Pd@ Au@ Pd three-shell nanoalloys: a molecular dynamics study. Inorg Chem Front 4:1551–1561

    Article  CAS  Google Scholar 

  131. Liu X, Wang D, Li Y (2012) Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7:448–466

    Article  CAS  Google Scholar 

  132. Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49

    Article  Google Scholar 

  133. Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2013) Crown Jewel catalyst: how neighboring atoms affect the catalytic activity of top Au atoms? J Catal 305:7–18

    Article  CAS  Google Scholar 

  134. Zhang H, Lu L, Kawashima K, Okumura M, Haruta M, Toshima N (2015) Synthesis and catalytic activity of crown jewel-structured (IrPd)/Au trimetallic nanoclusters. Adv Mater 27:1383–1388

    Article  CAS  PubMed  Google Scholar 

  135. Li M, Cheng D (2013) Molecular dynamics simulation of the melting behavior of crown-jewel structured Au–Pd nanoalloys. J Phys Chem C 117:18746–18751

    Article  CAS  Google Scholar 

  136. Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F, Ferrando R (2004) Magic polyicosahedral core–shell clusters. Phys Rev Lett 93:105503

    Article  CAS  PubMed  Google Scholar 

  137. Akbarzadeh H, Abbaspour M, Mehrjouei E, Ramezanzadeh S (2018) Pt–Co nanocluster in hollow carbon nanospheres. J Comput Chem 39:1267–1274

    Article  CAS  PubMed  Google Scholar 

  138. Yang Y, Zhao Z, Cui R, Wu H, Cheng D (2014) Structures, thermal stability, and chemical activity of crown-jewel-structured Pd–Pt nanoalloys. J Phys Chem C 119:10888–10895

    Article  Google Scholar 

  139. Akbarzadeh H, Abbaspour M, Mehrjouei E (2016) Phase transition in crown-jewel structured Au–Ir nanoalloys with different shapes: a molecular dynamics study. Phys Chem Chem Phys 18:25676–25686

    Article  CAS  PubMed  Google Scholar 

  140. Steinhardt PJ, Nelson DR, Ronchetti M (1983) Bond-orientational order in liquids and glasses. Phys Rev B 28:784

    Article  CAS  Google Scholar 

  141. Sankaranarayanan SK, Bhethanabotla VR, Joseph B (2005) Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Phys Rev B 71:195415

    Article  Google Scholar 

  142. Akbarzadeh H, Mehrjouei E, Masoumi A, Sokhanvaran V (2018) Pt-Pd nanoalloys with crown-jewel structures: how size of the mother Pt cluster affects on thermal and structural properties of Pt-Pd nanoalloys? J Mol Liq 249:477–485

    Article  CAS  Google Scholar 

  143. De Gennes P-G (1992) Soft matter. Science 64:645

    Google Scholar 

  144. Hu J, Zhou S, Sun Y, Fang X, Wu L (2012) Fabrication, properties and applications of Janus particles. Chem Soc Rev 41:4356–4378

    Article  CAS  PubMed  Google Scholar 

  145. Anker JN, Behrend C, Kopelman R (2003) Aspherical magnetically modulated optical nanoprobes (MagMOONs). J Appl Phys 93:6698–6700

    Article  CAS  Google Scholar 

  146. Anker JN, Behrend CJ, Huang H, Kopelman R (2005) Magnetically-modulated optical nanoprobes (MagMOONs) and systems. J Magn Magn Mater 293:655–662

    Article  CAS  Google Scholar 

  147. Behrend C, Anker J, Kopelman R (2004) Brownian modulated optical nanoprobes. Appl Phys Lett 84:154–156

    Article  CAS  Google Scholar 

  148. Howse JR, Jones RA, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Self-motile colloidal particles: from directed propulsion to random walk. Phys Rev Lett 99:048102

    Article  PubMed  Google Scholar 

  149. Behrend CJ, Anker JN, McNaughton BH, Brasuel M, Philbert MA, Kopelman R (2004) Metal-capped brownian and magnetically modulated optical nanoprobes (MOONs): micromechanics in chemical and biological microenvironments. J Phys Chem B 108:10408–10414

    Article  CAS  Google Scholar 

  150. Behrend CJ, Anker JN, McNaughton BH, Kopelman R (2005) Microrheology with modulated optical nanoprobes (MOONs). J Magn Magn Mater 293:663–670

    Article  CAS  Google Scholar 

  151. Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2016) A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: experimental and theoretical approaches. Colloids Surf A 506:56–62

    Article  CAS  Google Scholar 

  152. Hiekkataipale P, Löbling TI, Poutanen M, Priimagi A, Abetz V, Ikkala O, Gröschel AH (2016) Controlling the shape of Janus nanostructures through supramolecular modification of ABC terpolymer bulk morphologies. Polymer 107:456–465

    Article  CAS  Google Scholar 

  153. Bhandary D, Valechi V, Cordeiro MNLD, Singh JK (2017) Janus gold nanoparticles from nanodroplets of alkyl thiols: a molecular dynamics study. Langmuir 33:3056–3067

    Article  CAS  PubMed  Google Scholar 

  154. Chakraborty I, Som A, AditMaark T, Mondal B, Sarkar D, Pradeep T (2016) Toward a Janus Cluster: regiospecific decarboxylation of Ag44 (4-MBA) 30@ Ag nanoparticles. J Phys Chem C 120:15471–15479

    Article  CAS  Google Scholar 

  155. Walther A, Muller AH (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261

    Article  CAS  PubMed  Google Scholar 

  156. Kim H, Carney RP, Reguera J, Ong QK, Liu X, Stellacci F (2012) Synthesis and characterization of Janus gold nanoparticles. Adv Mater 24:3857–3863

    Article  CAS  PubMed  Google Scholar 

  157. Gröschel AH, Walther A, Löbling TI, Schmelz J, Hanisch A, Schmalz H, Müller AH (2012) Facile, solution-based synthesis of soft, nanoscale Janus particles with tunable Janus balance. J Am Chem Soc 134:13850–13860

    Article  PubMed  Google Scholar 

  158. Iida R, Kawamura H, Niikura K, Kimura T, Sekiguchi S, Joti Y, Bessho Y, Mitomo H, Nishino Y, Ijiro K (2015) Synthesis of Janus-like gold nanoparticles with hydrophilic/hydrophobic faces by surface ligand exchange and their self-assemblies in water. Langmuir 31:4054–4062

    Article  CAS  PubMed  Google Scholar 

  159. Lattuada M, Hatton TA (2011) Synthesis, properties and applications of Janus nanoparticles. Nano Today 6:286–308

    Article  CAS  Google Scholar 

  160. Herron N, Wang Y, Eddy MM, Stucky GD, Cox DE, Moller K, Bein T (1989) Structure and optical properties of cadmium sulfide superclusters in zeolite hosts. J Am Chem Soc 111:530–540

    Article  CAS  Google Scholar 

  161. Teo BK, Zhang H, Shi X (1993) Design, synthesis, and structure of the largest trimetallic cluster,[(Ph3P) 10Au12Ag12PtCl7] Cl: the first example of a trimetallic biicosahedralsupracluster and its implication for the vertex-sharing polyicosahedral growth of the gold/silver/platinum ternary cluster system. J Am Chem Soc 115:8489–8490

    Article  CAS  Google Scholar 

  162. Hungria AB, Raja R, Adams RD, Captain B, Thomas JM, Midgley PA, Golovko V, Johnson BF (2006) Single-step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew Chem Int Ed 45:4782–4785

    Article  CAS  Google Scholar 

  163. Fang P-P, Duan S, Lin X-D, Anema JR, Li J-F, Buriez O, Ding Y, Fan F-R, Wu D-Y, Ren B (2011) Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chem Sci 2:531–539

    Article  CAS  Google Scholar 

  164. Toshima N, Ito R, Matsushita T, Shiraishi Y (2007) Trimetallic nanoparticles having a Au-core structure. Catal Today 122:239–244

    Article  CAS  Google Scholar 

  165. Tsai S-H, Liu Y-H, Wu P-L, Yeh C-S (2003) Preparation of Au–Ag–Pd trimetallic nanoparticles and their application as catalysts. J Mater Chem 13:978–980

    Article  CAS  Google Scholar 

  166. Toshima N (2008) In Capped bimetallic and trimetallic nanoparticles for catalysis and information technology. Macromol Symp Wiley Online Library 20:27–39

    Article  Google Scholar 

  167. Yang J, Yang J, Ying JY (2012) Morphology and lateral strain control of Pt nanoparticles via core–shell construction using alloy AgPd core toward oxygen reduction reaction. ACS Nano 6:9373–9382

    Article  CAS  PubMed  Google Scholar 

  168. Wang L, Yamauchi Y (2010) Autoprogrammed synthesis of triple-layered Au@ Pd@ Pt core−shell nanoparticles consisting of a Au@ Pd bimetallic core and nanoporous Pt shell. J Am Chem Soc 132:13636–13638

    Article  CAS  PubMed  Google Scholar 

  169. Wang L, Yamauchi Y (2011) Strategic synthesis of trimetallic Au@ Pd@ Pt core− shell nanoparticles from poly (vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. J Mater Chem 23:2457–2465

    Article  CAS  Google Scholar 

  170. Akbarzadeh H, Shamkhali AN, Abbaspour M, Salemi S, Hajizadeh Z (2017) Effect of Pt addition to AgAu bimetallic nanoclusters: a molecular dynamics study of AgAuPt ternary system. J Alloys Compd 692:647–657

    Article  CAS  Google Scholar 

  171. Akbarzadeh H, Abbaspour M, Mehrjouei E (2016) Investigation of thermal, structural and dynamical properties of (Au x–Cu y–Ni y) N= 32,108,256 ternary nanosystems: effect of Au addition to Cu–Ni bimetallic nanoclusters via MD simulation. RSC Adv 6:67619–67629

    Article  CAS  Google Scholar 

  172. Akbarzadeh H, Abbaspour M, Mehrjouei E (2018) Effect of systematic addition of the third component on the melting characteristics and structural evolution of binary alloy nanoclusters. J Mol Liq 249:412–419

    Article  CAS  Google Scholar 

  173. Huang R, Shao G-F, Wen Y-H, Sun S-G (2014) Tunable thermodynamic stability of Au–CuPt core–shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations. Phys Chem Chem Phys 16:22754–22761

    Article  CAS  PubMed  Google Scholar 

  174. Akbarzadeh H, Abbaspour M, Mehrjouei E, Kamrani M (2018) AgPd@ Pt nanoparticles with different morphologies of cuboctahedron, icosahedron, decahedron, octahedron, and Marks-decahedron: insights from atomistic simulations. Inorg Chem Front 5:870–878

    Article  CAS  Google Scholar 

  175. Panizon E, Ferrando R (2016) Strain-induced restructuring of the surface in core@ shell nanoalloys. Nanoscale 8:15911–15919

    Article  CAS  PubMed  Google Scholar 

  176. Ferrando R (2014) Symmetry breaking and morphological instabilities in core–shell metallic nanoparticles. J Phys Condens Matter 27:013003

    Article  PubMed  Google Scholar 

  177. Akbarzadeh H, Abbaspour M, Mehrjouei E, Kamrani M (2018) Stability control of AgPd@ Pt trimetallic nanoparticles via Ag–Pd core structure and composition: a molecular dynamics study. Ind Eng Chem Res 57:6236–6245

    Article  CAS  Google Scholar 

  178. Zhang X, Li B, Liu H, Zhao G, Yang Q, Cheng X, Wong C, Zhang Y, Lim C (2019) Atomic simulation of melting and surface segregation of ternary Fe-Ni-Cr nanoparticles. Appl Surf Sci 465:871–879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Akbarzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, H., Mehrjouei, E., Abbaspour, M. et al. Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies. Top Curr Chem (Z) 379, 22 (2021). https://doi.org/10.1007/s41061-021-00332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00332-y

Keywords

Navigation