Skip to main content
Log in

Does P and Se doping effect molecular properties of S,N-heteroacene?

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present work the effect of doping of P and Se on the reactivity and aromaticity of a few S,N-heteroacenes are discussed in the light of density functional theory (DFT) and conceptual density functional theory (CDFT). Reactivity parameters, hardness (η) and electrophilicity (ω), chemical potential (μ) and energy of the HOMO (highest occupied molecular orbital, EHOMO) are calculated to measure stability and reactive nature of the compounds. Doping of ‘Se’ in thiophene ring has no prominent effect on HOMO and LUMO energy (lowest unoccupied molecular orbital, ELUMO) of S,N-heteroacenes. Interestingly, there is a significant HOMO-LUMO energy gap reduction when ‘N’ of pyrrole ring is doped with ‘P’. A steady decrease in the η values with respect to the size of the S,N-heteroacenes indicates the greater reactivity of larger acene systems. Nucleus independent chemical shift (NICS) advocates that doping of P exerts remarkable impact on the aromaticity of the concerned ring and overall aromaticity of the species. Time dependent density functional theory (TDDFT) study suggests decrease in absorption maxima with the increasing size of the oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Murphy RA, Frechet MJJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107:1066–1096

    Article  CAS  PubMed  Google Scholar 

  2. Anthony EJ (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106:5028–5048

    Article  CAS  PubMed  Google Scholar 

  3. Ye Q, Chi C (2014) Recent highlights and perspectives on acene based molecules and materials. Chem Mater 26:4046–4056

    Article  CAS  Google Scholar 

  4. Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Semiconducting π- conjugated system in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267

    Article  CAS  PubMed  Google Scholar 

  5. Kang B, Lee WH, Cho K (2013) Recent advances in organic transistor printing processes. ACS Appl Mater Int 5:2302–2315

    Article  CAS  Google Scholar 

  6. Brabec CJ, Heeney M, McCulloch I, Nelson J (2011) Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem Soc Rev 40:1185–1199

    Article  CAS  PubMed  Google Scholar 

  7. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    Article  CAS  PubMed  Google Scholar 

  8. Nalwa HS (1997) Handbook of organic conductive molecules and polymers. John Wiley & Sons Inc, New York

    Google Scholar 

  9. Fichou D (1999) Handbook of oligo- and polythiophenes. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  10. Brédas JL, Beljonne D, Coropceanu V, Cornil J (2004) Charge- transfer and energy- transfer processes in π- conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5004

    Article  PubMed  Google Scholar 

  11. Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  12. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: Solution-based approaches. Chem Rev 110:3–24

    Article  CAS  PubMed  Google Scholar 

  13. Wetzel C, Brier E, Vogt A, Mishra A, Mena-Osteritz E, Buerle P (2015) Fused Thiophene-Pyrrole-Containing Ring Systems up to a Heterodecacene. Angew Chem Int Ed 54:12334–12338

    Article  CAS  Google Scholar 

  14. Mitsudo K, Shimohara S, Mizoguchi J, Mandai H, Suga S (2012) Synthesis of nitrogen-bridged terthiophenes by tandem buchwald-hartwig coupling and their properties. Org Lett 14:2702–2705

    Article  CAS  PubMed  Google Scholar 

  15. He M, Li J, Sorensen ML, Zhang F, Hancock RR, Fong HH, Pozdin VA, Smilgies DM, Malliaras GG (2009) Alkyl substituted thienothiophene semiconducting materials: structure-property relationships. J Am Chem Soc 131:11930–11938

  16. Kim J, Han AR, Seo JH, Oh JH, Yang C (2012) β‑Alkyl substituted dithieno [2,3‑d;2′,3′-d]benzo[1,2‑b;4,5‑b′]dithiophene semiconducting materials and their application to solution-processed organic transistors. Chem Mater 24:3464−3472

  17. Deng Y, Chen Y, Zhang X, Tian H, Bao C, Yan D, Geng Y, Wang F (2012) Donor−Acceptor Conjugated Polymers with Dithienocarbazoles as Donor Units: Effect of Structure on Semiconducting Properties. Macromolecules 45:8621–8627

    Article  CAS  Google Scholar 

  18. Wetzel C, Mishra A, Mena-Osteritz E, Liess A, Stolte M, Würthner F, Bäuerle P (2014) Synthesis and structural analysis of thiophene-pyrrole-based S,N‑heteroacenes. Org Lett 16:362-365.

  19. Mishra A, Popovic D, Vogt A, Kast H, Leitner T, Walzer K, Pfeiffer M, Osteritz EM, Bäuerle P (2014) A-D–A-type S, N -Heteropentacenes: Next-Generation Molecular Donor Materials for Efficient Vacuum-Processed Organic Solar Cells. Adv Mater 26:7217–7223

    Article  CAS  PubMed  Google Scholar 

  20. Zotti V, Hernandez JT, Lopez-Navarette JT, Henssler AJ, Matzger Y, Suzuki S, Yamaguchi (2010) Chem Eur J 16:5481–5491

  21. Zhang X, Côté AP, Matzger AJ (2005) Synthesis and structure of fused α-oligothiophenes with up to seven rings. J Am Chem Soc 127:10502–10503

  22. Okamoto T, Kudoh K, Wakamiya A, Yamaguchi S (2007) General synthesis of extended fused oligothiophenes consisting of an even number of thiophene rings, Chemistry-A. Eur J 13:548–556

    Article  CAS  Google Scholar 

  23. Kunugi Y, Takimiya K, Yamane K, Yamashita K, Aso Y, Otsubo T (2003) Organic field-effect transitor using oligoselenophene. Chem Mater 15:6–7

    Article  CAS  Google Scholar 

  24. Takimiya K, Kunugi Y, Konda Y, Niihara N (2004) Otsubo, 2,6-Diphenylbenzo [1,2-b: 4,5-b’] dichalcogenophenes: A new class of high- perfomance semiconductors for organic field – effect transistors. J Am Chem Soc 126:5084–5085

    Article  CAS  PubMed  Google Scholar 

  25. Rasmussen S, Evenson SJ (2013) Dithieno [3,2-b : 2’,3’-d] pyrrole-based materials : synthesis and applications to organic electronics. Prog Polym Sci 38:1773–1804

    Article  CAS  Google Scholar 

  26. Gao P, Cho D, Yang X, Enkelmann V, Baumgarten M, Mîllen K (2010) Heteroheptacenes with fused thiophene and pyrrole rings, Chemistry- A. Eur J 16:5119–5128

    Article  CAS  Google Scholar 

  27. Mitsudo K, Shimohara S, Mizoguchi J, Mandai H, Suga S (2012) Synthesis of nitrogen- bridged terthiophenes by tandem Buchwald- Hartwig coupling and their properties. Org Lett 14:2702–2705

    Article  CAS  PubMed  Google Scholar 

  28. Mishra A, Popovic D, Vogt A, Kast H, Leitner T, Walzer K, Pfeiffer M, Osteritz EM, Bäuerle P (2014) Adv Mater 26:7217–7223

    Article  CAS  PubMed  Google Scholar 

  29. Kast H, Mishra A, Schulz GL, Urdanpilleta M, Mena‐Osteritz E, Bäuerle P (2015) Acceptor – Substituted S, N- Heteropentacenes of Different Conjugation Length: Structure – Property Relationship and Solar Cell Perfomance. Adv Funct Mater 25:3414–3424

  30. Bhattacharyya PK (2016) A DFT study on reactivity, aromaticity and absorption spectra of perylo [1,12-b, c, d] thiophene tetraester doped with B, N, O, Se and BN. Comput Theor Chem 1082:29–40

    Article  CAS  Google Scholar 

  31. Koch W, Holthausen MC (2015) A chemist’s guide to density functional theory. Willey-VCH, Weinheim

    Google Scholar 

  32. Casida ME (1995) Time – dependent density functional response theory for molecules. Recent advances in density functional methods: Part I(3):155–192

    Article  Google Scholar 

  33. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press 1

  34. Chattaraj PK (2009) Chemical reactivity theory, a density functional view CRC Press

  35. Hamid A, Roy RK (2019) Solvent effect on stabilization energy: An approach based on density functional reactivity theory. Int J Quantum Chem 119:1–12

    Article  Google Scholar 

  36. Putz MV, Mingos D, Michael PE (2012) Density functional theory of bose-einstein condensation: road to chemical bonding quantum condensate. Appl Dens Funct Theor Chem React 1-49

  37. Geerlings P, Proft FD, Langenaekar W (2003) Chem Rev 103:1793

    Article  CAS  PubMed  Google Scholar 

  38. Sarmah P (2020) DFT-based Reactivity and QSPR Studies of Platinum (IV) Anticancer Drugs. J Mol Graph Model 100:107682–107689

    Article  CAS  PubMed  Google Scholar 

  39. Sarmah A, Roy RK (2014) A density functional reactivity theory (DFRT) based approach to understand the interaction of cisplatin analogues with protecting agents. J Comput Aid Mol Des 28:1153–1173

    Article  CAS  Google Scholar 

  40. Sarmah P, Deka RC (2008) Solvent effect on the reactivity of Cis-platinum (II) complexes: A density functional approach. Int J Quantum Chem 108:1400–1409

    Article  CAS  Google Scholar 

  41. Marques MA, Maitra NT, Nogueira FM, Gross EK, Rubio A (2012) Fundamentals of time-dependent density functional theory. Heidelberg: Springer Berlin Heidelberg 837

  42. Dreuw A, Gordon MH (2005) Single- reference ab intio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037

    Article  CAS  PubMed  Google Scholar 

  43. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  44. Koopmans T (1934) Uber die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113

    Article  Google Scholar 

  45. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity Index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  46. Ditchfield RH, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. ix. an extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724

  47. Becke AD (1993) A new mixing of Hartee-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  48. Lee C, Yang W, Parr RG (1988) Development of the Colle- Salvetti correlation- energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  49. Ong TT, Ng SC, Chan HSO (2003) Synthesis, characterization and electrochemical properties of polybiselenophene. Polymer 44:5597–5603

    Article  CAS  Google Scholar 

  50. Zade SS, Sanjio S, Bendikov M (2006) Cyclic oligothiophenes: Novel organic materials and models for polythiophene, A theorical study. J Org Chem 71:2972–2981

    Article  CAS  PubMed  Google Scholar 

  51. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51-57

  52. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509

  53. Wolinski K, Hilton JF, Pulay P (1990) J  Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  54. Frisch et al (2010) Gaussian 09 Revision B. 01, Gaussian Inc., Wallingford, CT

  55. Purkayastha SK, Bhattacharyya PK (2016) Oligomerization in fused thiophene affect reactivity and Aromaticity. J Chem Sci 128:311–324

    Article  CAS  Google Scholar 

  56. Nemykin VN, Hadt RG, Belosludov RV, Mizuseki H, Kawazoe Y (2007) Influence of molecular geometry, exchange- correlation functional, and solvent effects in the modelling of vertical excitation energies in phthalocyanines using time- dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods. J Phys Chem A 111:12901–12913

  57. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time- dependent density- functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218-8224

  58. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  59. Schleyer PVR, Maerker C, Dransfeld A, Jiao H (1996) Hommes NJRVE 1996 Nucleus- independent chemical shift: A simple and efficient aromaticity probe. J Am Chem Soc 118:6317

    Article  CAS  PubMed  Google Scholar 

  60. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2005) Nucleus- independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888

    Article  CAS  PubMed  Google Scholar 

  61. Stanger A (2006) Nucleus- independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J Org Chem 71:883–893

    Article  CAS  PubMed  Google Scholar 

  62. Schleyer PVR, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, Hommes N (2001) Org Lett 3:2465

    Article  CAS  PubMed  Google Scholar 

  63. Corminboeuf C, Heine T, Seifert G, Schleyer PVR, Weber J (2004) Induced magnetic fields in aromatic [n]- annulenes- interpretation of NICS tensor components. Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  64. Wodrich MD, Corminboeuf C, Park SS, Schleyer PVR (2007) Double aromaticity in monocyclic carbon, boron, and borocarbon rings based on magnetic criteria. Chem A Eur J 13:4582–4593

  65. Shaidaei HFB, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2006) Org Lett 8:863–866

    Article  Google Scholar 

  66. Ghiasi R, Monajjemi M (2007) Theoretical study of borthiin and its derivatives: structure and aromaticity. J Sulfur Chem 28:505–511

    Article  CAS  Google Scholar 

  67. Nie Y, Pritzkow H, Wadepohl H, Siebert W (2005) Halogen exchange at boron in nido-C4B2 carboranes. J Organomet Chem 690:4761–4767

  68. Ghiasi R (2005) The mono- and di-silanaphthalene: Structure, properties, and aromaticity. J Mol Struct Theochem 718:225–233

  69. Ghiasi R (2008) Theoretical study of classical isomers tropylium, azatropylium, phosphatropylium, and arsatropylium cations: structure, properties and aromaticity. Main Group Chem 7:147–154

  70. Ebrahimi AA, Ghiasi R, Foroutan-Nejad C (2010) Topological characteristics of the Ring Critical Points and the aromaticity of groups IIIA to VIA hetero-benzenes. J Mol Struct Theochem 941:47–52

  71. Ghiasi R, Amini E (2015) Theoretical view on structural, chemical reactivity, aromaticiy and 14N NQR parameters of iridapyridine isomers. J Struct Chem 56:1458–1467

    Article  CAS  Google Scholar 

  72. Ghiasi R (2014) Quantum mechanical study of the structure, natural bond analysis, HOMO–LUMO analysis, substit+uents effect, and aromaticity on iridanaphthalene. Struct Chem 25:829–838

  73. Ghiasi R (2011) Theoretical Study on Platinabenzene and Mono and Difluorinated Platinabenzenes: Structure, Properties, and Aromaticity. Russ J Coord Chem 37:463–467

    Article  CAS  Google Scholar 

  74. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensor. J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  75. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251

  76. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  77. Nemykin N, Hadt RG, Belosludov RV, Mizuseki H, Kawazoe Y (2007) Influence of molecular Geometry, exchange–correlation functional, and solvent effects in the modelling of vertical excitation energies in phthalocyanines using time dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies. J Phys Chem A 111:12901–12913

    Article  CAS  PubMed  Google Scholar 

  78. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) TD- DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4:123–135

    Article  CAS  PubMed  Google Scholar 

  79. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: An evaluation and a diagnostic test. J Chem Phys 128

    Article  PubMed  Google Scholar 

  80. Eduard E, Wetzel C, Bauer M, Mena-Osteritz E, Wunderlin M, Bäuerle P (2019) S,N-heteroacenes up to a tridecamer. Chem Mater 31:7007–7023

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the three authors were involved in doing computations/calculations of the molecules. Pubalee Sarmah and Bapan Saha wrote the main manuscript.

Corresponding authors

Correspondence to Bapan Saha or Pradip Kr. Bhattacharyya.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmah, P., Saha, B. & Bhattacharyya, P.K. Does P and Se doping effect molecular properties of S,N-heteroacene?. Struct Chem (2023). https://doi.org/10.1007/s11224-023-02227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-023-02227-8

Keywords

Navigation