Skip to main content

Advertisement

Log in

Adsorption behavior of carvedilol drug on delivery systems of pure aluminum nitrite nanotube and its Ni-doping and decorated from the theoretical perspective

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

By using the density functional B3LYP, the impact of doping and decorating the Ni atom on the carvedilol (CV) drug delivery performance of a Ni-decorated AlN nanotube (Ni@AlNNT) and a pure AlN nanotube (PAlNNT) was investigated. The PAlNNT was not suitable for the drug delivery of CV. Doping and decorating the Ni atom into the structure of AlNNT increased the adsorption energy of CV from -5.3 to -24.3 and -31.6 kcal/mol, respectively, which demonstrated that the sensitivity of the Ni@AlNNT increased more compared to the case of Ag-doping. To examine the solvent effect on the adsorption energy for CV/Ni@AlNNT, which was -29.4 kcal/mol, the polarizable continuum model (PCM) was employed. There was a slight decrease in the sensing response of the AlNNT to CV in the water solvent. Finally, the adsorption capacity and performance of CV increased after doping and decorating the Ni atom, especially after decorating the Ni atom, which made the AlNNT more favorable for the drug delivery of CV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data will be available if required.

References

  1. Li C, Naveed M, Dar K, Liu Z, Baig MMFA, Lv R, Saeed M, Dingding C, Feng Y, Xiaohui Z (2021) J Drug Target 29:235–248

    Article  PubMed  CAS  Google Scholar 

  2. Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A (2018) Lancet 392:1736–1788

    Article  Google Scholar 

  3. Fuster V (2014) American College of Cardiology Foundation Washington, DC 64:520–522

  4. Li J, Yang Y, Ning E, Peng Y, Zhang J (2019) Eur J Pharm Sci 128:290–298

    Article  PubMed  CAS  Google Scholar 

  5. Singh R, Kim W-S, Ollinger M, Craciun V, Coowantwong I, Hochhaus G, Koshizaki N (2002) Appl Surf Sci 197:610–614

    Article  Google Scholar 

  6. Yang M, Li C, Luo L, Li R, Long Y (2021) Int Commun Heat Mass Transf 125:105317. https://doi.org/10.1016/j.icheatmasstransfer.2021.105317

    Article  CAS  Google Scholar 

  7. Wang X, Song Y, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Gao T, Liu M (2023) Int J Adv Manuf Technol 1–52. https://doi.org/10.1007/s00170-022-10767-2

  8. Jia D, Li C, Liu J, Zhang Y, Yang M, Gao T, Said Z, Sharma S (2023) Friction 1–25. https://doi.org/10.1007/s40544-022-0734-2

  9. Zheng J, Long X, Chen H, Ji Z, Shu B, Yue R, Liao Y, Ma S, Qiao K, Liu Y (2022) Front Mol Biosci 9:39. https://doi.org/10.3389/fmolb.2022.845179

    Article  CAS  Google Scholar 

  10. Li Z, Teng M, Jiang Y, Zhang L, Luo X, Liao Y, Yang B (2022) Front Immunol 13:857727. https://doi.org/10.3389/fimmu.2022.857727. PMID: 35444649; PMCID: PMC9013966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang Y, Zhai W, Cheng S, Li J, Zhang H (2023) Friction 1–24. https://doi.org/10.1007/s40544-022-0710-x

  12. Wang Y, Zhai W, Zhang H, Cheng S, Li J (2023) Macromol Biosci 2200554. https://doi.org/10.1002/mabi.202200554

  13. Li B, Wang W, Zhao L, Yan D, Li X, Gao Q, Zheng J, Zhou S, Lai S, Feng Y (2023) ACS Nano 17:4601–4618. https://doi.org/10.1021/acsnano.2c10694

    Article  PubMed  CAS  Google Scholar 

  14. Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ (2019) J Adv Res 15:1–18

    Article  PubMed  CAS  Google Scholar 

  15. Karmali PP, Simberg D (2011) Expert Opin Drug Deliv 8:343–357

    Article  PubMed  CAS  Google Scholar 

  16. Luo Q, Gu W (2020) Mol Phys 118:1774088. https://doi.org/10.1080/00268976.2020.1774088

    Article  CAS  Google Scholar 

  17. Gao J, Guo C, Wang X, Zhang W, Wang Y, Vahabi V (2020) Mol Phys 118:1678776. https://doi.org/10.1080/00268976.2019.1678776

    Article  CAS  Google Scholar 

  18. Siqi J, Shasha Y, Xiao W, Gu W (2020) Mol Phys 118:1757775. https://doi.org/10.1080/00268976.2020.1757775

    Article  CAS  Google Scholar 

  19. Darabinajand B, Mirmohseni A, Niaei A (2023) J Appl Polym Sci e53908. https://doi.org/10.1002/app.53908

  20. Namarvari H, Razmara N, Meneghini JR, Miranda CR (2021) J Mol Model 27:253

    Article  PubMed  CAS  Google Scholar 

  21. Varatharaj R (2022) J Mol Model 28:53

    Article  PubMed  Google Scholar 

  22. Rahimi R, Solimannejad M, Ehsanfar Z (2021) J Mol Model 27:347

    Article  PubMed  CAS  Google Scholar 

  23. Xu H, Wang Q, Fan G, Chu X (2018) Theoret Chem Acc 137:1–15

    Article  Google Scholar 

  24. Bianco A, Kostarelos K, Prato M (2005) Curr Opin Chem Biol 9:674–679

    Article  PubMed  CAS  Google Scholar 

  25. Dobson J (2006) Drug Dev Res 67:55–60

    Article  CAS  Google Scholar 

  26. Aghahosseini A, Edjlali L, Jamehbozorgi S, Rezvani M, Ghasemi E (2023) J Mol Liq 369:120865. https://doi.org/10.1016/j.molliq.2022.120865

    Article  CAS  Google Scholar 

  27. Rodrigues A, Emeje M (2012) Carbohyd Polym 87:987–994

    Article  CAS  Google Scholar 

  28. Kohane DS (2007) Biotechnol Bioeng 96:203–209

    Article  PubMed  CAS  Google Scholar 

  29. Tanreh S, Rezvani M, Ganji MD (2023) J Phys Chem Solids 174:111171. https://doi.org/10.1016/j.jpcs.2022.111171

    Article  CAS  Google Scholar 

  30. Lan J-S, Liu L, Zeng R-F, Qin Y-H, Hou J-W, Xie S-S, Yue S, Yang J, Ho RJ, Ding Y (2021) Chem Eng J 407:127212. https://doi.org/10.1016/j.cej.2020.127212

    Article  CAS  Google Scholar 

  31. Nikmaram F, Khoddamzadeh A (2016) Int J Bio-Inorg Hybr Nanomater 5:229–234

    Google Scholar 

  32. Farhang Rik B, Ahmadi R, Karegar Razi M (2019) Q J Iran Chem Commun 7:405–414

    Google Scholar 

  33. Rezvani M, Astaraki M, Rahmanzadeh A, Ganji MD (2021) Phys Chem Chem Phys 23:17440–17452. https://doi.org/10.1039/D1CP02891J

    Article  PubMed  CAS  Google Scholar 

  34. Mostafavi M, Tanreh S, Astaraki M, Farjah B, Rasoolidanesh M, Rezvani M, Ganji MD (2022) Phys B Condens Matter 626:413446. https://doi.org/10.1016/j.physb.2021.413446

    Article  CAS  Google Scholar 

  35. Sabet M, Tanreh S, Khosravi A, Astaraki M, Rezvani M, Ganji MD (2022) Diam Relat Mater 126:109142. https://doi.org/10.1016/j.diamond.2022.109142

    Article  CAS  Google Scholar 

  36. Makiabadi B, Zakarianezhad M, Hosseini SS (2021) Struct Chem 32:1019–1037

    Article  CAS  Google Scholar 

  37. Shadi M, Hamedani S (2022) Struct Chem 34:905–914

  38. Kurban M, Muz İ (2022) Struct Chem 1–11. https://doi.org/10.1007/s11224-022-02063-2

  39. Herlem G, Picaud F, Girardet C, Micheau O (2019) Nanocarriers Drug Deliv 469–529

  40. Iannazzo D, Piperno A, Pistone A, Grassi G, Galvagno S (2013) Curr Med Chem 20:1333–1354

    Article  PubMed  CAS  Google Scholar 

  41. Adeli M, Hakimpoor F, Ashiri M, Kabiri R, Bavadi M (2011) Soft Matter 7:4062–4070

    Article  CAS  Google Scholar 

  42. Zhou X, Zhao C, Wu G, Chen J, Li Y (2018) Appl Surf Sci 459:354–362

    Article  CAS  Google Scholar 

  43. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  PubMed  CAS  Google Scholar 

  44. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comp Chem 14:1347–1363

    Article  CAS  Google Scholar 

  45. O'Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839–845

    Article  PubMed  CAS  Google Scholar 

  46. Burk P, Koppel IA, Koppel I, Leito I, Travnikova O (2000) Chem Phys Lett 323:482–489

    Article  CAS  Google Scholar 

  47. Peyghan AA, Soleymanabadi H (2014) Mol Phys 112:2737–2745

    Article  CAS  Google Scholar 

  48. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  49. Ganji MD, Jameh-Bozorgi S, Rezvani M (2016) Appl Surf Sci 384:175–181. https://doi.org/10.1016/j.apsusc.2016.05.011

    Article  CAS  Google Scholar 

  50. Alexey Y, Timoshkin H, Henry F (1997) J Am Chem Soc 119:5668–5668. https://doi.org/10.1021/ja964163s

    Article  Google Scholar 

  51. Chase MW Jr, Curnutt JL, Downey JR Jr, McDonald RA, Syverud AN, Valenzuela EA (1982) J Phys Chem Ref Data 11:695

    Article  CAS  Google Scholar 

  52. Mennucci B, Tomasi J, Cammi R, Cheeseman J, Frisch M, Devlin F, Gabriel S, Stephens P (2002) J Phys Chem A 106:6102–6113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mustafa M. Kadhim.

Ethics declarations

Ethics approval

We approved all Ethics.

Conflicts of interest/competing interests

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, D.H., Rheima, A.M., Kadhim, M.M. et al. Adsorption behavior of carvedilol drug on delivery systems of pure aluminum nitrite nanotube and its Ni-doping and decorated from the theoretical perspective. Struct Chem 35, 361–369 (2024). https://doi.org/10.1007/s11224-023-02185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02185-1

Keywords

Navigation