Skip to main content
Log in

Cluster formation between an oxadiazole derivative with metal nanoclusters (Ag/Au/Cu), graphene quantum dot sheets, SERS studies, and solvent effects

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Interaction of an oxadiazole derivative, 5-(3,4-dimethoxyphenyl)-3-(3-methoxyphenyl)-1,2,4-oxadiazole (DPMO) with Ag/Au/Cu and graphene quantum dots with different solvents, is reported theoretically. The adsorption energy is maximum for the Cu6 cluster and minimum for the Ag6 cluster. The asymmetric charge redistribution between DPMO and M6s produces an improvement in dipole moment values. The decrease in energy gaps of complexes increased conductivity and metal clusters can be used as a drug sensor. The solvation energies are more negative in solvent media than in the gaseous media, indicating an enhancement in the solvent medium’s stability. Wave function studies show that there exist significant noncovalent interactions between metal clusters and oxadiazole that facilitate cluster formation. DPMO is found to form stable clusters with graphene which is evident from the enhancement of Raman activity of the system through SERS also enabling it for sensing DPMO in a mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

N/A.

References

  1. Jain AK, Sharma S, Vaidya A, Ravichandran V, Agarwal RK (2013) 1,3,4-thiadiazole and its derivatives: a review on recent progress in biological activities. Chem Biol Drug Des 81:557–576. https://doi.org/10.1111/cbdd.12125

    Article  CAS  PubMed  Google Scholar 

  2. Reuman M, Daum SJ, Singh B, Wentland MP, Perni RB, Pennock P, Carabateas PM, Gruett MD, Saindane MT, Dorff PH, Coughlin SA, Sedlock DM, Rake JB, Lesher GY (1995) Synthesis and antibacterial activity of some novel 1-substituted 1,4-dihydro-4-oxo-7-pyridinyl-3-quinolinecarboxylic acids, potentiantistaphylococcal agents. J Med Chem 38:2531–2540. https://doi.org/10.1021/jm00014a005

    Article  CAS  PubMed  Google Scholar 

  3. Khanum SA, Shashikanth S, Umesha S, Kavitha R (2005) Synthesis and antimicrobial study of novel heterocyclic compounds from hydroxyl benzophenones. Eur J Med Chem 40:1156–1162. https://doi.org/10.1016/j.ejmech.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  4. Zarudnitskii EV, Pervak II, Merkulov AS, Yurchenko AA, Tolmachev AA (2008) Trimethylsilyl-1,3,4-oxadiazoles-new useful synthons from the synthesis of various 2,5-disubstituted-1,3,4-oxadiazoles. Tetrahedron 64:10431–10442. https://doi.org/10.1016/j.tet.2008.08.040

    Article  CAS  Google Scholar 

  5. Tan TM, Chen Y, Kong KH, Bai J, Li Y, Lim SG, Ang TG, Lam Y (2006) Synthesis and the biological evaluation of 2-beneznesulfonylaklyl-5-substituted-sulfanyl-[1,3,4]-oxadiazoles as potential antihepatitis B virus agents. Antivir Res 71:7–14. https://doi.org/10.1016/j.antiviral.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  6. Girish V, Khanum NF, Gurupadaswamy HD, Khanum SA (2014) Synthesis and evaluation of in vitro antimicrobial activity of novel 2-[2-(aroyl)aroyloxy]methyl-1,3,4-oxadiazoles. Russ J Bioorg Chem 40:330–335. https://doi.org/10.1134/S1068162014030066

    Article  CAS  Google Scholar 

  7. Aboria AS, Abdel-Rahman HM, Mahfouz NM, El-Gendy MA (2006) A novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: promising anticancer agents. Bioorg Med Chem Lett 14:1236–1246. https://doi.org/10.1016/j.bmc.2005.09.053

    Article  CAS  Google Scholar 

  8. Ranganatha VL, Khanum SA (2014) Synthesis and evaluation of in vitro antioxidant properties of novel 2,5-disubstituted 1,3,4-oxadiazoles. Russ J Bioorg Chem 40:206–213. https://doi.org/10.1134/S1068162014020083

    Article  CAS  Google Scholar 

  9. Khan MTH, Choudhary MI, Khan KM, Rani M, Atta-ur-Rahman (2005) Structure activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues. Bioorg Med Chem 13:3385–3395. https://doi.org/10.1016/j.bmc.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  10. Palmer JT, Hirschbein BL, Cheung H, McCarter J, Janc JW, Yu WZ, Wesolowski G (2006) Keto-1,3,4-oxadiazoles as cathepsin K inhibitors. Bioorg Med Chem Lett 16:2909–2914. https://doi.org/10.1016/j.bmcl.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  11. Gurupadaswamy HD, Thirusangu P, Avin BRV, Vigneshwaran V, Prashanth Kumar MV, Abhishek TS, Ranganatha VL, Khanum SA, Prabhakar BT (2014) DAO-9(2,5-di(3-aryloxylaryloxymehtyl)-1,3,4-oxadiazole) exhibits p53 induced apoptogenesis through caspase-3 mediated endonuclease activity in murine carcinoma. Biomed Pharmacother 68:791–797. https://doi.org/10.1016/j.biopha.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  12. Khan BA, Zafar S, Mughal EU, Ahmed MN, Hamdani SS, Akhter T, Haq I, Sadiq A, Khan KM (2018) Design and synthesis of novel 1,3,4-oxadiazole derivatives bearing azo moiety as biologically significant scaffolds. Lett Drug Des Discov 15:1346–1355. https://doi.org/10.2174/1507180815666180326152204

    Article  CAS  Google Scholar 

  13. Ahmaed MN, Sadiq B, Al-Masoudi NA, Yasin KA, Hameed S, Mahmood T, Ayub K, Tahir MN (2018) Synthesis, crystal structures, computational studies and antimicrobial activity of new designed bis((5-aryl-1,3,4-oxadiazol-2-yl)thio) alkanes. J Mol Struct 1155:403–413. https://doi.org/10.1016/j.molstruc.2017.11.011

    Article  CAS  Google Scholar 

  14. Mormile P, Petti L, Gillo M, Laurienzo P, Malinconico M, Roviello A, Lipson S, Blau W (2003) Optical properties of a novel alkoxy-substituted poly (p-phenylene 1,3,4-oxadiazoles) for electro-optical devices. Mater Chem Phys 77:945–951. https://doi.org/10.1016/S0254-0584(02)00187-6

    Article  CAS  Google Scholar 

  15. Casu MB, Imperia P, Schulz B, Schrader S (2002) Electronic structure at the interface between metals and new materials for organic light emitting diodes. Surf Sci 507–510:666–671. https://doi.org/10.1016/S0039-6028(02)01333-X

    Article  Google Scholar 

  16. Lai CK, Ke YC, Chien-Shen JCS, Li WR (2002) Heterocyclic 1,3,4-oxadiazole as columnar core. Liq Cryst 29:915–920. https://doi.org/10.1080/02678290210129957

    Article  CAS  Google Scholar 

  17. Patel KD, Prajapati SM, Panchal SN, Patel HD (2014) Review of synthesis of 1,3,4-oxadiazole derivatives. Synth Commun 44:1859–1875. https://doi.org/10.1080/00397911.2013.879901

    Article  CAS  Google Scholar 

  18. Xu C, Han Y, Xu S, Wang R, Yue M, Tian Y, Li X, Zhao Y, Gond P (2020) Design, synthesis and biological evaluation of new Axl kinase inhibitors containing 1,3,4-oxadiazole acetamide moiety as novel linker. Eur J Med Chem 186:111867. https://doi.org/10.1016/j.ejmech.2019.111867

    Article  CAS  PubMed  Google Scholar 

  19. Chortani S, Edziri H, Manachou M, Al-Ghamdi YO, Almalki SG, Alqurashi YE, Jannet HB, Romdhance A (2020) Novel 1,3,4-oxadiazole linked benzopyrimidinones conjugates: synthesis, DFT study and antimicrobial evaluation. J Mol Struct 1217:128357. https://doi.org/10.1016/j.molstruc.2020.128357

    Article  CAS  Google Scholar 

  20. Hamdani SS, Khan BA, Ahmed MN, Hameed S, Akhter K, Ayub K, Mahmood T (2020) Synthesis, crystal structures, computational studies and alpha-amylase inhibition of three novel 1,3,4-oxadiazole derivatives. J Mol Struct 1200:127085. https://doi.org/10.1016/j.molstruc.2019.127085

    Article  CAS  Google Scholar 

  21. Kalia V, Kumar P, Kumar S, Pahuja P, Jhaa G, Lata S, Dahiya H (2020) Synthesized oxadiazole derivatives as benign agents for controlling mild steel dissolution: experimental and theoretical approach. J Mol Liq 313:113601. https://doi.org/10.1016/j.molliq.2020.113601

    Article  CAS  Google Scholar 

  22. Daicoviciu D, Filip A, Ion RM, Clichici S, Decea N, Muresan A (2011) Oxidative photodamage induced by photodynamic therapy with methoxyphenyl porphyrin derivatives in tumour bearing rats. Folia Biol (Praha) 57:12–19 (PMID:21457649)

    CAS  PubMed  Google Scholar 

  23. Zhang ZQ, Kong LY, Xiong Y, Luo Y, Li J (2014) The synthesis of Cu(II), Zn(II) and Co(II) metalloporphyrins and their improvement to the property of Li/SOCl2 battery. J Solid State Electrochem 18:3471–3477. https://doi.org/10.1007/s10008-014-2571-3

    Article  CAS  Google Scholar 

  24. Mamtmin G, Kari N, Abdurahman R, Nizamidin P, Yimit A (2020) 5,10,15,20-tetrakis-(4-methoxyphenyl)porphyrin film /K+ ion exchanged optical waveguide gas sensor. Opt Laser Technol 128:106260. https://doi.org/10.1016/j.optlastec.2020.106260

    Article  CAS  Google Scholar 

  25. Chawla G, Naaz B, Siddiqui AA (2018) Exploring 1,3,4-oxadiazole scaffold for anti-inflammatory and analgesic activities: a review of literature form 2005–2016. Mini Rev Med Chem 18:216–233. https://doi.org/10.2174/1389557517666170127121215

    Article  CAS  PubMed  Google Scholar 

  26. Glomb T, Szymankiewicz K, Swiatek P (2018) Anticancer activity of derivatives of 1,3,4-oxadiazole. Molecules 23:3361. https://doi.org/10.3390/molecules23123361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Verma G, Khan MF, Akthar W, Alsm MM, Akhter M, Shaquiquzzaman M (2019) A review exploring therapeutic worth of 1,3,4-oxadiazole tailored compounds. Mini Rev Med Chem 19:477–509. https://doi.org/10.2174/1389557518666181015152433

    Article  CAS  PubMed  Google Scholar 

  28. Sun J, Zhu H, Yang ZM, Zhu HL (2013) Synthesis, molecular modeling and biological evaluationof 2-aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione quinolone derivatives as novel anticancer agent. Eur J Med Chem 60:23–28. https://doi.org/10.1016/j.ejmech.2012.11.039

    Article  CAS  PubMed  Google Scholar 

  29. Zhang F, Wang XL, Shi J, Wang SF, Yin Y, Yang YS, Zhang WM, Zhu HL (2014) Synthesis, molecular modeling and biological evaluation of N-benzylidene-2-((5-(pyridine-4-yl)-1,3,4-oxadiazol-2-yl)thio)acetohydrazide derivatives as potential anticancer agents. Bioorg Med Chem 22:468–477. https://doi.org/10.1016/j.bmc.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  30. Pillegowda M, Periyasamy G (2016) DFT studies on the influence of ligation on optical and redox properties of bimetallic [Au4M2] clusters. RSC Adv 6:86051–86060.https://doi.org/10.1039/C6RA14886G

  31. Tlahuice-Flores A (2016) Ligand effects on the optical and chiroptical properties of the thiolated Au18 cluster. Phys Chem Chem Phys 18:27738–27744. https://doi.org/10.1039/C6CP04298H

    Article  CAS  PubMed  Google Scholar 

  32. Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Raman spectra of pyridine adsorbed at silver electrode. Chem Phys Lett 26:163–166. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  33. Wenning U, Pettinger B, Wetzel H (1980) Anguler-resolved Raman spectroscopy of pyridine on copper and gold electrodes. Chem Phys Lett 70:49–54. https://doi.org/10.1016/0009-2614(80)80058-3

    Article  CAS  Google Scholar 

  34. JCreighton JA, Alvarez MS, Weitz DA, Garoff S, Kim MW (1983) Surface-enhanced Raman scattering by molecules adsorbed on aqueous copper colloids. J Phys Chem 87:4793. https://doi.org/10.1021/j150642a007

    Article  Google Scholar 

  35. Mengoli G, Musiani MM, Fleischmann M, Mao B, Tian ZQ (1987) Enhanced Raman scattering from iron electrodes. Electrochim Acta 32:1239–1245. https://doi.org/10.1016/0013-4686(87)80042-7

    Article  CAS  Google Scholar 

  36. Huang QJ, Li XQ, Yao JL, Ren B, Cai WB, Gao JS, Mao BW, Tian ZQ (1999) Extending surface Raman spectroscopic studies to transition metals for practical applications: III. Effects of surface roughening procedure on surface-enhanced Raman spectroscopy from nickel and platinum electrodes. Surf Sci 427–428:162–166. https://doi.org/10.1016/S0039-6028(90)00258-7

    Article  Google Scholar 

  37. Loo BH (1981) Surface enhanced Raman scattering from pyridine adsorbed on cadmium. J Chem Phys 75:5955.https://doi.org/10.1063/1.442050

  38. Lopez-Rios T, Pettenkofer C, Pockrand I, Otto A (1982) Enhanced Raman scattering from aluminium films. Surf Sci 121:L541-L544.https://doi.org/10.1016/0039-6028(82)90231-X

  39. Jennings C, Aroca R, Hor AM, Loutfy RO (1984) Surface-enhanced Raman scattering from copper and zinc phthalocyanine complexes by silver and indium island films. Anal Chem 56:2033–2035. https://doi.org/10.1021/ac00276a012

    Article  CAS  Google Scholar 

  40. Lund PA, Tevault DE, Smardzewski RR (1984) Surface enhanced Raman spectroscopy of benzene adsorbed on vapor deposited sodium, chemical contribution to the enhancement mechanism. J Phys Chem 88:1731–1735. https://doi.org/10.1021/j150653a014

    Article  CAS  Google Scholar 

  41. Zuo C, Jagodzinski PW (2005) Surface-enhanced Raman scattering of pyridine using different metals: differences and explanation based on the selective formation of α-pyridyl on metal surfaces. J Phys Chem B 109:1788–1793. https://doi.org/10.1021/jp0406363

    Article  CAS  PubMed  Google Scholar 

  42. Muneer S, Sarfo DK, Ayoko GA, Islam N, Izake EL (2020) Gold-deposited nickel foam as recyclable plasmonic sensor for therapeutic drug monitoring in blood by surface-enhanced Raman spectroscopy. Nanomaterials 10:1756. https://doi.org/10.3390/nano10091756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Omary FAM, Mary YS, Panicker CY, El-Emam AA, Al-Swaidan IA, Al-Saadi AA, VanAlsenoy C (2015) Spectroscopic investigations, NBO, HOMO-LUMO, NLO analysis and molecular docking of 5-(adamantan-1-yl)-3-anilinomethyl-2,3-dihydro-1,3,4-oxadiazole-2-thione, a potential bioactive agent. J Mol Struct 1096:1–14. https://doi.org/10.1016/j.molstruc.2015.03.049

    Article  CAS  Google Scholar 

  44. Haress NG, Al-Omary F, El-Emam AA, Mary YS, Panicker CY, Al-Saadi AA, War JA, Van Alsenoy C (2015) Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole. Spectrochim Acta 135:973–983. https://doi.org/10.1016/j.saa.2014.07.077

    Article  CAS  Google Scholar 

  45. El-Azab AS, Mary YS, Abdel-Aziz AAM, Miniyar PB, Armakovic S, Armakovic SJ (2018) Synthesis, spectroscopic analyses (FTIR and NMR), vibrational study, chemical reactivity and molecular docking study and anti-tubercular activity of condensed oxadiazole and pyrazine derivatives. J Mol Struct 1156:657–674. https://doi.org/10.1016/j.molstruc.2017.12.018

    Article  CAS  Google Scholar 

  46. Al-Tamimi AS, Mary YS, Miniyar PB, Al-Wahaibi LH, El-Emam AA, Armakovic S, Armakovic SJ (2018) Synthesis, spectroscopic analyses, chemical reactivity and molecular docking study and antitubercular activity of pyrazine and condensed oxadiazole derivatives. J Mol Struct 1164:459–469. https://doi.org/10.1016/j.molstruc.2018.03.085

    Article  CAS  Google Scholar 

  47. Mary YS, Miniyar PB, Mary YS, Resmi KS, Panicker CY, Armaković S, Armaković SJ, Thomas R, Sureshkumar B (2018) Synthesis and spectroscopic study of three new oxadiazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J Mol Struct 1173:469–480. https://doi.org/10.1016/j.molstruc.2018.07.026

    Article  CAS  Google Scholar 

  48. Panicker CY, Varghese HT, Ambujakhan KR, Mathew S, Ganguli S, Nanda AK, Van Alsenoy C, Mary YS (2010) Ab initio and density functional theory studies on vibrational spectra of 3-{[(4-methoxyphenyl)methylene]amino}-2-phenylquinazolin-4(3H)-one. Eur J Chem 1:37–43. https://doi.org/10.5155/eurjchem.1.1.37-43

    Article  CAS  Google Scholar 

  49. Mary YS, Panicker CY, Narayana B, Samshuddin S, Sarojini BK, Van Alsenoy C (2014) FT-IR, molecular structure, HOMO-LUMO, MEP, NBO analysis and first order hyperpolarizability of Methyl 4,4’’-difluoro-5’-methoxy-1,1’:3’,1’’-terphenyl-4’-carboxylate. Spectrochim Acta 133:480–488. https://doi.org/10.1016/j.saa.2014.06.031

    Article  CAS  Google Scholar 

  50. Renjith R, Mary YS, Panicker CY, Varghese HT, Pakozinska-Parys M, Van Alsenoy C, Al-Saadi AA (2014) Spectroscopic (FT-IR, FT-Raman) investigations and quantum chemical calculations of 1,7,8,9-tetracholoro-10,10-dimethoxy-4-{3-[4-(3-methoxyphenyl)piperazin-1-yl]propyl}-4-azatricyclo[5.2.1.0.2,6]dec-8-ene-3,5-dione. Spectrochim Acta 129:438–450. https://doi.org/10.1016/j.saa.2014.03.077

    Article  CAS  Google Scholar 

  51. Mary YS, Panicker CY, Anto PL, Sapnakumari M, Narayana B, Sarojini BK (2015) Molecular structure, FT-IR, NBO, HOMO and LUMO, MEP and first order hyperpolarizability of (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one by HF and density functional methods. Spectrochim Acta 135:81–92. https://doi.org/10.1016/j.saa.2014.06.140

    Article  CAS  Google Scholar 

  52. Renjith R, Mary YS, Varghese HT, Panicker CY, Thiemann T, Shereef A, Al-Saadi AA (2015) Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone. J Phys Chem Solids 87:110–121. https://doi.org/10.1016/j.jpcs.2015.07.024

    Article  CAS  Google Scholar 

  53. Bain D, Maity S, Paramanik B, Patra A (2018) Core-size dependent fluorescent gold nanoclusters and ultrasensitive detection of Pb2+ ion. ACS Sustainable Chem Eng 6:2334–2343. https://doi.org/10.1021/acssuschemeng.7b03794

    Article  CAS  Google Scholar 

  54. Maity S, Bain D, Bhattacharyya K, Das S, Bera R, Jana B, Paramanik B, Datta A, Patra A (2018) Ultrafast relaxation of dynamics of luminescent copper nanoclusters (Cu7L3) and efficient electron transfer to functionalized reduced graphene oxide. J Phys Chem C 122:13354–13362. https://doi.org/10.1021/acs.jpcc.7b09959]

    Article  CAS  Google Scholar 

  55. Echavarren AM, Jiao N, Gevorgyan V (2016) Coinage metals in organic synthesis. Chem Soc Rev 45:4445–4447. https://doi.org/10.1039/C6CS90072K

    Article  CAS  PubMed  Google Scholar 

  56. Huang L, Arndt M, Gooben K, Heydt H, Gooben LJ (2015) Late transition metal-catalyzed hydroamination and hydroamidation. Chem Rev 115:2596–2697. https://doi.org/10.1021/cr300389u

    Article  CAS  PubMed  Google Scholar 

  57. Wang W, Cui L, Sun P, Shi L, Yue C, Li F (2018) Reusable N-heterocyclic carbene complex catalysts and beyond: a perspective on recycling strategies. Chem Rev 118:9843–9929. https://doi.org/10.1021/acs.chemrev.8b00057

    Article  CAS  PubMed  Google Scholar 

  58. Budagumpi S, Haque RA, Endud S, Rehman GU, Salman AW (2013) Biologically relevant silver(I)-N-heterocyclic carbene complexes: synthesis, structure, intramolecular interactions and applications. Eur J Inorg Chem 25:4367–4388. https://doi.org/10.1002/ejic.201300483

    Article  CAS  Google Scholar 

  59. Kleinhans G, Chan AKW, Leung MY, Liles DC, Fernandes MA, Yam VWW, Fernandez I, Bezuidenhout DI (2020) Synthesis and photophysical properties of T-shaped coinage metal complexes. Chem Eur J 26:6993–6998. https://doi.org/10.1002/chem.202000726

    Article  CAS  PubMed  Google Scholar 

  60. Hamze R, Shi S, Kapper SC, Sylvinson D, Ravinson M, Estergreen L, Jung MC, Tadle AC, Haiges R, Djurovich PI, Peltier JL, Jazzar R, Bertrand G, Bradforth SE, Thompson ME (2019) “Quick-silver” from a systematic study of highly luminescent, two-coordinate, d10 coinage metal complexes. J Am Chem Soc 141:8616–8626. https://doi.org/10.1021/jacs.9b03657

    Article  CAS  PubMed  Google Scholar 

  61. Diaz-Requejo MM, Perez PJ (2008) Coinage metal catalyzed C-H bond functionalization of hydrocarbons. Chem Rev 108:3379–3394. https://doi.org/10.1021/cr078364y

    Article  CAS  PubMed  Google Scholar 

  62. Ott I (2009) On the medicinal chemistry of gold complexes as anticancer drugs. Coord Chem Rev 253:1670–1681. https://doi.org/10.1016/j.ccr.2009.02.019

    Article  CAS  Google Scholar 

  63. Mohamed AA (2010) Advances in the coordination chemistry of nitrogen ligand complexes of coinage metals. Coord Chem Rev 254:1918–1947. https://doi.org/10.1016/j.ccr.2010.02.003

    Article  CAS  Google Scholar 

  64. Lopez-de-Luzuriaga JM, Monge M, Olmos ME (2017) Luminescent aryl-group eleven metal complexes. Dalton Trans 46:2046–2067. https://doi.org/10.1039/C6DT04386K

    Article  CAS  PubMed  Google Scholar 

  65. Gaussian 16, Revision A.03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

  66. GaussView, Version 6.1, Dennington R, Keith TA, Millam JM (2016) Semichem Inc., Shawnee Mission, KS

  67. Al-Otaibi JS, Mary YS, Mary YS, Serdaroglu G (2021) Adsorption of adipic acid in Al/B-N/P nanocages: DFT investigations. J Mol Model 27:113. https://doi.org/10.1007/s00894-021-04742-z

    Article  CAS  PubMed  Google Scholar 

  68. Al-Otaibi JS, Mary YS, Mary YS, Kaya S, Serdaroglu G (2021) DFT computational study of trihalogenated aniline derivative’s adsorption onto graphene/fullerene/fullerene-like nanocages, X12Y12 (X=Al,B and Y=N,P). J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1914172

  69. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.10002/jcc.22885

  70. Govindachar DM, Periyasamay G (2020) DFT studies on ureido-peptide functionalized Au4M2 bimettalic nanoclusters. Chem Phys Lett 753:137612. https://doi.org/10.1016/j.cplett.2020.137612

    Article  CAS  Google Scholar 

  71. Al-Otaibi JS, Mary YS, Mary YS, Thomas R (2022) Evidence of cluster formation of croconic acid with Ag, Au and Cu cages, enhancement of electronic properties and Raman activity. Spectrochim Acta 264:120233. https://doi.org/10.1016/j.saa.2021.120233

    Article  CAS  Google Scholar 

  72. Al-Otaibi JS, Mary YS, Mary YS, Trivedi R, Chakraborty B (2022) Theoretical investigation on the adsorption of melamine in Al12/B12-N12/P12 fullerene-like nanocages: a platform for ultrasensitive detection of melamine. Chem Pap 76:225–238. https://doi.org/10.1007/s11696-021-01849-8

    Article  CAS  Google Scholar 

  73. Rad AS (2015) First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl Surf Sci 357:1217–1224. https://doi.org/10.1016/j.apsusc.2015.09.168

    Article  CAS  Google Scholar 

  74. Zou M, Zhang J, Chen J, Li X (2012) Simulating adsorption of organic pollutants on finite (8,0) single walled carbon nanotubes in water. Environ Sci Technol 46:8887–8894. https://doi.org/10.1021/es301370f

    Article  CAS  PubMed  Google Scholar 

  75. Fallahi P, Jouypazadeh H, Farrokhpour H (2018) Theoretical studies on the potentials of some nanocages (Al12N12, Al12P12, B12N12, Be12O12, C12Si12, Mg12O12 and C24) on the detection and adsorption of tabun molecule: DFT and TD-DFT study. J Mol Liq 260:138–148. https://doi.org/10.1016/j.molliq.2018.03.085

    Article  CAS  Google Scholar 

  76. Jiang J, Yan T, Cui D, Wang J, Salehabadi M, Shen J, Guo F (2020) Quantum chemical study on the potential application of pristine and BN-doped graphynes for Carac drug detection. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.146758

    Article  Google Scholar 

  77. Rad AS, Kashani OR (2015) Adsorption of acetyl halide molecules on the surface pristine and Al-doped graphene: Ab initio study. Appl Surf Sci 355:233–241. https://doi.org/10.1016/j.apsusc.2015.07.113

    Article  CAS  Google Scholar 

  78. Glendening ED, Reed AE, Carpenter JE, Weinhold F (2003) NBO version 3.1, Gaussian Inc., Pittsburg, PA

  79. Costa RA, Barros GA, da Silva JN, Oliveira KM, Bezerra DP, Soares MBP, Costa EV (2021) Experimental and theoretical study on spectral features, reactivity, solvation, topoisomerase I inhibition and in vitro cytotoxicity in human HepG2 cells of guadiscine and guadiscidine aporphine alkaloids. J Mol Struct 1229:129844. https://doi.org/10.1016/j.molstruc.2020.129844

    Article  CAS  Google Scholar 

  80. Al-Otaibi JS, Mary YS, Mary YS, Ullah Z, Kwon HW (2022) Adsorption behavior and solvent effects of an adamantane-triazole derivative on metal clusters-DFT simulation studies. J Mol Liq 345:118242. https://doi.org/10.1016/j.molliq.2021.118242

    Article  CAS  Google Scholar 

  81. Al-Otaibi JS, Mary YS, Mary YS (2022) Adsorption of a thione bioactive derivative over different silver/gold clusters – DFT investigations. Comput Theor Chem 1207:113497. https://doi.org/10.1016/j.comptc.2021.113497

    Article  CAS  Google Scholar 

  82. Alharthi FA, Al-Zaqri N, Alsalme A, Al-Taleb A, Pooventhiran T, Thomas R, Rao DJ (2021) Excited-state electronic properties, structural studies, noncovalent interactions and inhibition of the novel severe acute respiratory syndrome corona virus 2 proteins in ripretinib by first principle simulations. J Mol Liq 324:115134. https://doi.org/10.1016/j.molliq.2020.115134

    Article  CAS  PubMed  Google Scholar 

  83. Surendar P, Pooventhiran T, Al-Zaqri N, Rajam S, Rao DJ, Thomas R (2021) Synthesis of three quasi liquid Schiff bases between hexanal and adenine, cytosine and l-leucine, structural interpretation, quantum mechanical studies and biological activity prediction. J Mol Liq 341:117305. https://doi.org/10.1016/j.molliq.2021.117305

    Article  CAS  Google Scholar 

  84. Alsalme A, Pooventhiran T, Al-Zaqri N, Rao DJ, Thomas R (2021) Structural, physic-chemical landscapes, ground state and excited state properties in different solvent atmosphere of avapritinib and its ultrasensitive detection using SERS/GERS on self-assembly formation with graphene quantum dots. J Mol Liq 322:114555. https://doi.org/10.1016/j.molliq.2020.114555

    Article  CAS  Google Scholar 

  85. Al-Zaqri N, Pooventhiran T, Rao DJ, Alsalme A, Warad I, Thomas R (2021) Structure, conformational dynamics, quantum mechanical studies and potential biological activity analysis of multiple sclerosis medicine ozanimod. J Mol Struct 1227:129685. https://doi.org/10.1016/j.molstruc.2020.129685

    Article  CAS  Google Scholar 

  86. Al-Zaqri N, Pooventhiran T, Alsalme A, Warad I, John AM, Thomas R (2020) Structural and physic-chemical evaluation of melatonin and its solution state excited properties with emphasis on its binding with novel corona virus proteins. J Mol Liq 318:114082. https://doi.org/10.1016/j.molliq.2020.114082

  87. Pooventhiran T, Bhattacharyya U, Rao DJ, Chandramohan V, Karunakar P, Irfan A, Mary YS, Thomas R (2020) Detailed spectra, electronic properties, qualitative non-covalent interaction analysis, solvatochromism, docking and molecular dynamics simulations in different solvent atmosphere of cenobamate. Struct Chem 31:2475–2485. https://doi.org/10.1007/s11224-020-01607-8

    Article  CAS  Google Scholar 

  88. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997. https://doi.org/10.1103/PhysRevLett.52.997

    Article  CAS  Google Scholar 

  89. Bhunia A, Manna S, Mistri S, Paul A, Manne RK, Santra MK, Bertolasi V, Manna SC (2015) Synthesis, characterization, TDDFT calculation and biological activity of tetradentate ligand based square pyramidal Cu(II) complexes. RSC Adv 5:67727–67737.https://doi.org/10.1039/C5RA12324K

  90. Stevenson K, McVey AF, Clark IBN, Swain PS, Pilizota T (2016) General calibration of microbial growth in microplate readers. Sci Rep 6:38828. https://doi.org/10.1038/srep38828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen B, Liu M, Zhang L, Huang J, Yao J, Zhang Z (2011) Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem 21:7736–7741.https://doi.org/10.1039/C1JM10341E

  92. Pan Y, Bao H, Sahoo NG, Wu T, Li L (2011) Water soluble poly (N-isopropylacrylamide) graphene sheets synthesized via click chemistry for drug delivery. Adv Func Mater 21:2754–2763. https://doi.org/10.1002/adfm.201100078

    Article  CAS  Google Scholar 

  93. vanStevendaal MHME, vanHest JCM, Mason AF (2021) Functional interactions between bottom-up synthetic cells and living matter for biomedical applications. ChemSystemsChem 3:e2100009. https://doi.org/10.1002/syst.202100009

    Article  CAS  Google Scholar 

Download references

Funding

The author, Jamelah S.Al-Otaibi, expresses her gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R13), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Jamelah S. Al-Otaibi: software, supervision, manuscript preparation, and data analysis. Y. Sheena Mary: supervision, manuscript preparation, conceiving the problem, and data analysis, Y. Shyma Mary: manuscript preparation, conceiving the problem, and data analysis and correction, Ravi Trivedi: software, supervision, manuscript preparation, and data analysis, Brahmananda Chakrabory: software, supervision, manuscript preparation, and data analysis, Renjith Thomas: software, supervision, manuscript preparation, and data analysis, The authors read and approved the final manuscript.

Corresponding author

Correspondence to Jamelah S.Al-Otaibi.

Ethics declarations

Ethics approval

We declare that this manuscript is original and that it was written by the authors and has not been published elsewhere. This study is not divided into other parts. The article reflects the research and analysis of the authors themselves truthfully and completely.

Consent to participate

All the authors consent to participate in this research.

Consent for publication

All authors agreed and approved this version of the article. All authors were responsible for ensuring the accuracy and integrity of all aspects of this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 834 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S.Al-Otaibi, J., Mary, Y.S., Mary, Y.S. et al. Cluster formation between an oxadiazole derivative with metal nanoclusters (Ag/Au/Cu), graphene quantum dot sheets, SERS studies, and solvent effects. Struct Chem 34, 867–877 (2023). https://doi.org/10.1007/s11224-022-02052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02052-5

Keywords

Navigation