Skip to main content

Advertisement

Log in

QSAR, molecular docking and ADMET studies of quinoline, isoquinoline and quinazoline derivatives against Plasmodium falciparum malaria

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

With the aim of researching new antimalarial drugs, a series of quinoline, isoquinoline, and quinazoline derivatives were studied against the Plasmodium falciparum CQ-sensitive and MQ-resistant strain 3D7 protozoan parasite. DFT with B3LYP functional and 6-311G basis set was used to calculate quantum chemical descriptors for QSAR models. The molecular mechanics (MM2) method was used to calculate constitutional, physicochemical, and topological descriptors. By randomly dividing the dataset into training and test sets, we were able to construct reliable models using linear regression (MLR), nonlinear regression (MNLR), and artificial neural networks (ANN). The determination coefficient values indicate the predictive quality of the established models. The robustness and predictive power of the generated models were also confirmed via internal validation, external validation, the Y-randomization test, and the applicability domain. Furthermore, molecular docking studies were conducted to identify the key interactions between the studied molecules and the PfPMT receptor’s active site. The findings of this contribution study indicate that the antimalarial activity of these compounds against Plasmodium falciparum appears to be largely determined by four descriptors, i.e., total connectivity (Tcon), percentage of carbon (C (%)), density (D), and bond length between the two nitrogen atoms (Bond N–N). On the basis of the reliable QSAR model and molecular docking results, several new antimalarial compounds have been designed. The selection of drug candidates was performed according to drug-likeness and ADMET parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The data availability is included in the manuscript.

Code availability

Not applicable.

References

  1. Newby G, Bennett A, Larson E et al (2016) The path to eradication: a progress report on the malaria-eliminating countries. Lancet 387:1775–1784. https://doi.org/10.1016/S0140-6736(16)00230-0

  2. Napoli PE, Nioi M (2020) Global Spread of Coronavirus Disease 2019 and Malaria: An Epidemiological Paradox in the Early Stage of A Pandemic. J Clin Med 9:1138. https://doi.org/10.3390/JCM9041138

  3. Mwenesi H, Mbogo C, Casamitjana N et al (2022) Rethinking human resources and capacity building needs for malaria control and elimination in Africa. PLoS Glob Public Heal 2:e0000210. https://doi.org/10.1371/JOURNAL.PGPH.0000210

  4. Hocart SJ, Liu H, Deng H et al (2011) 4-aminoquinolines active against chloroquine-resistant Plasmodium falciparum: basis of antiparasite activity and quantitative structure-activity relationship analyses. Antimicrob Agents Chemother 55:2233–2244. https://doi.org/10.1128/AAC.00675-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hadni H, Elhallaoui M (2020) 3D-QSAR, docking and ADMET properties of aurone analogues as antimalarial agents. Heliyon 6:e03580. https://doi.org/10.1016/J.HELIYON.2020.E03580

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hadni H, Mazigh M, Charif E et al (2018) Molecular modeling of antimalarial agents by 3D-QSAR study and molecular docking of two hybrids 4-aminoquinoline-1,3,5-triazine and 4-aminoquinoline-oxalamide derivatives with the receptor protein in its both wild and mutant types. Biochem Res Int 2018. https://doi.org/10.1155/2018/8639173

  7. Hadni H, Elhallaoui M (2020) 2D and 3D-QSAR, molecular docking and ADMET properties in silico studies of azaaurones as antimalarial agents. New J Chem 44:6553–6565. https://doi.org/10.1039/C9NJ05767F

    Article  CAS  Google Scholar 

  8. Witola WH, Pessi G, El Bissati K et al (2006) Localization of the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum to the Golgi apparatus *. J Biol Chem 281:21305–21311. https://doi.org/10.1074/JBC.M603260200

    Article  CAS  PubMed  Google Scholar 

  9. Witola WH, El Bissati K, Pessi G et al (2008) Disruption of the Plasmodium falciparum PfPMT gene results in a complete loss of phosphatidylcholine biosynthesis via the serine-decarboxylase-phosphoethanolamine-methyltransferase pathway and severe growth and survival defects *. J Biol Chem 283:27636–27643. https://doi.org/10.1074/JBC.M804360200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee SG, Kim Y, Alpert TD et al (2012) Structure and reaction mechanism of phosphoethanolamine methyltransferase from the malaria parasite Plasmodium falciparum: an antiparasitic drug target. J Biol Chem 287:1426–1434. https://doi.org/10.1074/JBC.M111.315267/ATTACHMENT/F9BD9DDE-084F-4060-81A9-8E07149522FB/MMC2.PDF

    Article  CAS  PubMed  Google Scholar 

  11. Oguike OE, Ugwuishiwu CH, Asogwa CN et al (2022) Systematic review on the application of machine learning to quantitative structure–activity relationship modeling against Plasmodium falciparum. Mol Divers 1:1–16. https://doi.org/10.1007/S11030-022-10380-1/TABLES/1

    Article  Google Scholar 

  12. Aja PM, Agu PC, Ezeh EM et al (2021) (2021) Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: de novo synthesis of test compounds, molecular docking, and ADMET studies. Bull Natl Res Cent 451(45):1–18. https://doi.org/10.1186/S42269-021-00554-6

    Article  Google Scholar 

  13. Er-rajy M, El Fadili M, Hadni H et al (2022) 2D-QSAR modeling, drug-likeness studies, ADMET prediction, and molecular docking for anti-lung cancer activity of 3-substituted-5-(phenylamino) indolone derivatives. Struct Chem 2022:1–14. https://doi.org/10.1007/S11224-022-01913-3

    Article  Google Scholar 

  14. Kar S, Roy K, Leszczynski J (2022) In silico tools and software to predict ADMET of new drug candidates. 85–115. https://doi.org/10.1007/978-1-0716-1960-5_4

  15. Rasul HO, Aziz BK et al (2022) Correction to: In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer. J Mol Model 2022 284 28:1–1. https://doi.org/10.1007/S00894-022-05068-0

  16. Kpotin GA, Bédé AL, Houngue-Kpota A et al (2019) Relationship between electronic structures and antiplasmodial activities of xanthone derivatives: a 2D-QSAR approach. Struct Chem 30:2301–2310. https://doi.org/10.1007/S11224-019-01333-W/FIGURES/5

    Article  CAS  Google Scholar 

  17. Kumari A, Karnatak M, Sen D et al (2022) Synthesis, molecular docking and dynamics study of novel epoxide derivatives of 1,2,4-trioxanes as antimalarial agents. Struct Chem 2022:1–13. https://doi.org/10.1007/S11224-022-01885-4

    Article  Google Scholar 

  18. Ursing J, Johns R, Aydin-Schmidt B et al (2022) Chloroquine-susceptible and -resistant Plasmodium falciparum strains survive high chloroquine concentrations by becoming dormant but are eliminated by prolonged exposure. J Antimicrob Chemother. https://doi.org/10.1093/JAC/DKAC008

    Article  PubMed  PubMed Central  Google Scholar 

  19. Small-Saunders JL, Hagenah LM, Wicht KJ et al (2022) Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance. PLOS Pathog 18:e1010278. https://doi.org/10.1371/JOURNAL.PPAT.1010278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guillon J, Cohen A, Boudot C et al (2020) Design, synthesis, and antiprotozoal evaluation of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives. J Enzyme Inhib Med Chem 35:432–459. https://doi.org/10.1080/14756366.2019.1706502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chtita S, Ghamali M, Ousaa A et al (2019) QSAR study of anti-Human African Trypanosomiasis activity for 2-phenylimidazopyridines derivatives using DFT and Lipinski’s descriptors. Heliyon 5:e01304. https://doi.org/10.1016/J.HELIYON.2019.E01304

    Article  PubMed  PubMed Central  Google Scholar 

  22. Singh J, Vijay S, Mansuri R et al (2019) Computational and experimental elucidation of Plasmodium falciparum phosphoethanolamine methyltransferase inhibitors: Pivotal drug target. PLoS ONE 14:e0221032. https://doi.org/10.1371/JOURNAL.PONE.0221032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Allinger NL (2002) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134. https://doi.org/10.1021/JA00467A001

    Article  Google Scholar 

  24. Strack D (2001) ChemOffice Ultra 2000: CambridgeSoft, c/o CHEM Research GmbH, Frankfurt, DM 3,290. Phytochemistry 57:144. https://doi.org/10.1016/S0031-9422(00)00503-3

  25. Österberg T, Norinder U (2001) Prediction of drug transport processes using simple parameters and PLS statistics The use of ACD/logP and ACD/ChemSketch descriptors. Eur J Pharm Sci 12:327–337. https://doi.org/10.1016/S0928-0987(00)00189-5

  26. Belhassan A, Chtita S, Lakhlifi T, Bouachrine M (2017) QSPR study of the retention/release property of odorant molecules in pectin gels using statistical methods. J Taibah Univ Sci 11:1030–1046. https://doi.org/10.1016/J.JTUSCI.2017.05.004

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al, Gaussian09 RA (2009) gaussian. Inc., Wallingford CT, 121, 150–166

  28. David CC, Jacobs DJ (2014) Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol 1084:193–226. https://doi.org/10.1007/978-1-62703-658-0_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lagunin A, Zakharov A, Filimonov D, Poroikov V (2011) QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol Inform 30:241–250. https://doi.org/10.1002/MINF.201000151

    Article  CAS  PubMed  Google Scholar 

  30. Leonard JT, Roy K (2006) On selection of training and test sets for the development of predictive QSAR models. QSAR Comb Sci 25:235–251. https://doi.org/10.1002/QSAR.200510161

    Article  CAS  Google Scholar 

  31. Papa E, Dearden JC, Gramatica P (2007) Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere 67:351–358. https://doi.org/10.1016/J.CHEMOSPHERE.2006.09.079

    Article  CAS  PubMed  Google Scholar 

  32. Salt DW, Yildiz N, Livingstone DJ, Tinsley CJ (1992) The use of artificial neural networks in QSAR. Pestic Sci 36:161–170. https://doi.org/10.1002/PS.2780360212

    Article  CAS  Google Scholar 

  33. Vidal NP, Manful CF, Pham TH et al (2020) The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. MethodsX 7:100835. https://doi.org/10.1016/J.MEX.2020.100835

  34. Wang WW, Ni RQ, Yu FY et al (2018) Optimization of GERD therapeutic regimen based on ANN and realization of MATLAB. Digit Chinese Med 1:47–55. https://doi.org/10.1016/S2589-3777(19)30007-2

  35. Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20:770–787. https://doi.org/10.1590/S0103-50532009000400021

    Article  CAS  Google Scholar 

  36. Gramatica P, Sangion A (2016) A historical excursus on the statistical validation parameters for QSAR Models: a clarification concerning metrics and terminology. J Chem Inf Model 56:1127–1131. https://doi.org/10.1021/ACS.JCIM.6B00088

    Article  CAS  PubMed  Google Scholar 

  37. Javidfar M, Ahmadi S (2020) QSAR modelling of larvicidal phytocompounds against Aedes aegypti using index of ideality of correlation. 31:717–739. https://doi.org/10.1080/1062936X.2020.1806922

  38. Rácz A, Bajusz D, Héberger K (2018) Modelling methods and cross-validation variants in QSAR: a multi-level analysis. 29:661–674. https://doi.org/10.1080/1062936X.2018.1505778

  39. Kůrková V (1992) Kolmogorov’s theorem and multilayer neural networks. Neural Netw 5:501–506. https://doi.org/10.1016/0893-6080(92)90012-8

    Article  Google Scholar 

  40. Andrea TA, Kalayeh H (1991) Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors. J Med Chem 34:2824–2836. https://doi.org/10.1021/JM00113A022

    Article  CAS  PubMed  Google Scholar 

  41. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

    Article  CAS  PubMed  Google Scholar 

  42. Rücker C, Rücker G, Meringer M (2007) y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357. https://doi.org/10.1021/CI700157B

    Article  PubMed  Google Scholar 

  43. Roy K, Mitra I (2011) On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen 14:450–474. https://doi.org/10.2174/138620711795767893

    Article  CAS  PubMed  Google Scholar 

  44. Netzeva TI, Worth AP, Aldenberg T et al (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim 33:155–173. https://doi.org/10.1177/026119290503300209

    Article  CAS  PubMed  Google Scholar 

  45. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701. https://doi.org/10.1002/QSAR.200610151

    Article  CAS  Google Scholar 

  46. Eriksson L, Jaworska J, Worth AP et al (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361. https://doi.org/10.1289/EHP.5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frey A, Di Canzio J, Zurakowski D (1998) A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods 221:35–41. https://doi.org/10.1016/S0022-1759(98)00170-7

    Article  CAS  PubMed  Google Scholar 

  48. Hansch C, Leo A, Mekapati SB, Kurup A (2004) QSAR and ADME. Bioorg Med Chem 12:3391–3400. https://doi.org/10.1016/J.BMC.2003.11.037

    Article  CAS  PubMed  Google Scholar 

  49. Jin Z, Wang Y, Yu XF et al (2020) Structure-based virtual screening of influenza virus RNA polymerase inhibitors from natural compounds: Molecular dynamics simulation and MM-GBSA calculation. Comput Biol Chem 85. https://doi.org/10.1016/J.COMPBIOLCHEM.2020.107241

  50. Chtita S, Aouidate A, Belhassan A et al (2020) QSAR study of N-substituted oseltamivir derivatives as potent avian influenza virus H5N1 inhibitors using quantum chemical descriptors and statistical methods. New J Chem 44:1747–1760. https://doi.org/10.1039/C9NJ04909F

    Article  CAS  Google Scholar 

  51. Daina A, Michielin O (2017) Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Reports 71(7):1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  52. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/ACS.JMEDCHEM.5B00104/SUPPL_FILE/JM5B00104_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chtita S, Belhassan A, Aouidate A et al (2021) Discovery of potent SARS-CoV-2 inhibitors from approved antiviral drugs via docking and virtual screening. Comb Chem High Throughput Screen 24:441–454. https://doi.org/10.2174/1386207323999200730205447

    Article  CAS  PubMed  Google Scholar 

  54. Wang Q, He J, Wu D et al (2015) Interaction of α-cyperone with human serum albumin: Determination of the binding site by using Discovery Studio and via spectroscopic methods. J Lumin 164:81–85. https://doi.org/10.1016/J.JLUMIN.2015.03.025

  55. Sriramulu DK, Wu S, Lee SG (2020) Effect of ligand torsion number on the AutoDock mediated prediction of protein-ligand binding affinity. J Ind Eng Chem 83:359–365. https://doi.org/10.1016/J.JIEC.2019.12.009

  56. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins Struct Funct Genet 52:609–623. https://doi.org/10.1002/PROT.10465

    Article  CAS  PubMed  Google Scholar 

  57. Westermaier Y, Barril X, Scapozza L (2015) Virtual screening: an in silico tool for interlacing the chemical universe with the proteome. Methods 71:44–57. https://doi.org/10.1016/J.YMETH.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  58. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29. https://doi.org/10.1016/J.CHEMOLAB.2015.04.013

    Article  CAS  Google Scholar 

  59. OECD principles for the validation, for regulatory purposes, of (quantitative) structure-activity relationship models

  60. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. https://doi.org/10.1002/MINF.201000061

    Article  CAS  PubMed  Google Scholar 

  61. Belhassan A, Chtita S, Lakhlifi T, Bouachrine M (2017) QSPR study of the retention/release property of odorant molecules in water using statistical methods. Orbital 9:234–247. https://doi.org/10.17807/ORBITAL.V9I4.978

  62. Garg R, Smith CJ (2014) Predicting the bioconcentration factor of highly hydrophobic organic chemicals. Food Chem Toxicol 69:252–259. https://doi.org/10.1016/J.FCT.2014.03.035

    Article  CAS  PubMed  Google Scholar 

  63. Irwin JJ, Tang KG, Young J et al (2020) ZINC20 - a free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model 60:6065–6073. https://doi.org/10.1021/ACS.JCIM.0C00675/SUPPL_FILE/CI0C00675_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalantzi L, Goumas K, Kalioras V et al (2006) Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 23:165–176. https://doi.org/10.1007/S11095-005-8476-1

    Article  CAS  PubMed  Google Scholar 

  65. Speciale A, Muscarà C, Molonia MS et al (2021) Silibinin as potential tool against SARS-Cov-2: in silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. Phytother Res 35:4616–4625. https://doi.org/10.1002/PTR.7107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han Y, Zhang J, Hu CQ et al (2019) In silico ADME and toxicity prediction of ceftazidime and its impurities. Front Pharmacol 10:434. https://doi.org/10.3389/FPHAR.2019.00434/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Domínguez-Villa FX, Durán-Iturbide NA, Ávila-Zárraga JG (2021) Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: potential inhibitors of SARS CoV-2 main protease. Bioorg Chem 106:104497. https://doi.org/10.1016/J.BIOORG.2020.104497

    Article  PubMed  Google Scholar 

  68. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141. https://doi.org/10.1016/J.PHARMTHERA.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  69. Ferraz ERA, Umbuzeiro GA, de-Almeida G, et al (2011) Differential toxicity of Disperse Red 1 and Disperse Red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test. Environ Toxicol 26:489–497. https://doi.org/10.1002/TOX.20576

    Article  CAS  PubMed  Google Scholar 

  70. Pogliani L (2000) From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors. Chem Rev 100:3827–3858. https://doi.org/10.1021/CR0004456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the “Association Marocaine des Chimistes Théoriciens” (AMCT) for its pertinent help concerning the programs and software.

Author information

Authors and Affiliations

Authors

Contributions

Said El Rhabori, Abdellah El Aissouq, Samir Chtita, and Fouad Khalil: these authors contributed equally to this work.

Corresponding author

Correspondence to Said El Rhabori.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 619 KB)

Supplementary file2 (DOCX 191 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Rhabori, S., El Aissouq, A., Chtita, S. et al. QSAR, molecular docking and ADMET studies of quinoline, isoquinoline and quinazoline derivatives against Plasmodium falciparum malaria. Struct Chem 34, 585–603 (2023). https://doi.org/10.1007/s11224-022-01988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01988-y

Keywords

Navigation