Skip to main content
Log in

Unveiling the reactivity of truxillic and truxinic acids (TXAs): deprotonation, anion…H–O, cation…O and cation…\({\varvec{\pi}}\) interactions in TXA0…Y+ and TXA0…Z complexes (Y = Li, Na, K; Z = F, Cl, Br)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Herein, we report a quantum chemistry investigation of the interaction between µ-truxinic acid, referred to as TXA0, and Y+ (Y = Li, Na, K) and Z (Z = F, Cl, Br) ions using M06-2X, B3LYP and \(\omega\) B97XD functionals in conjunction with the 6–31 +  + G(d,p), aug-cc-pVDZ(-X2C) and 6–311 +  + G (d, p) basis sets. Our computations suggest that Y+ cations can bind to TXA0 through several combinations of cation…O and cation-π interactions, while Z anions generally establish anion…H–O contacts. Predicted binding energies at the M06-2X/6–311 +  + G(d,p) level range between − 26.6 and − 70.2 kcal/mol for cationic complexes and − 20.4 and − 62.3 kcal/mol for anionic ones. As such, TXA0 appears as an amphoteric molecule with a slight preference for electrophilic (cation... O) attacks. Furthermore, the most favourable binding site for cations allows for the formation of O…cation…O interactions where the cation is trapped between O37 and O38 atoms of TXA0. Anions do not behave uniformly towards TXA0: while the fluoride anion F induces the deprotonation of TXA0, Br and Cl do not. All of these structural insights are supported by topological calculations in the context of the quantum theory of atoms in molecules (QTAIM). Finally, SAPT0 analyses suggest that TXA0…Y+ and TXA0…Z complexes are mainly stabilized by electrostatic and inductive effects, whose combined contributions account for more than 60 percent of the total interaction energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the datasets supporting the findings reported in this study are included in the manuscript and the supplementary material.

References

  1. Lurie IS, Moore JM, Kram TC, Cooper DA (1990) Isolation, identification and separation of isomeric truxillines in illicit cocaine. J Chromatogr A 504:391–401

    Article  CAS  Google Scholar 

  2. Hesse O (1892) Zur kenntniss der cocabl¨atter. Justus Liebigs Ann Chem 271(2):180–228

    Article  Google Scholar 

  3. Liebermann C, Bergami O (1889) Ueber die einwirkung der schwefels¨aure auf γ-und δ-isatropas¨aure. Ber Dtsch Chem Ges 22(1):782–786

    Article  Google Scholar 

  4. Mallette JR, Casale JF (2014) Rapid determination of the isomeric truxillines in illicit cocaine via capillary gas chromatography/flame ionization detection and their use and implication in the determination of cocaine origin and trafficking routes. J Chromatogr A 1364:234–240

    Article  CAS  Google Scholar 

  5. Baugh L, Liu R (1991) Sample differentiation: cocaine example. Forens Sci Rev 3:101

    CAS  Google Scholar 

  6. Ford CW, Hartley RD (1989) GC/MS characterisation of cyclodimers from p-coumaric and ferulic acids by photodimerisation—a possible factor influencing cell wall biodegradability. J Sci Food Agric 46(3):301–310

    Article  CAS  Google Scholar 

  7. Nishikubo T, Takahashi E, Miyaji T, Iizawa T (1985) Convenient synthesis of β-truxinic acid via photodimerization of para-nitrophenyl cinnamate in the crystalline state. Bull Chem Soc Jpn 58(11):3399–3400

    Article  CAS  Google Scholar 

  8. Hartley RD, Morrison WH III, Balza F, Towers GN (1990) Substituted truxillic and truxinic acids in cell walls of cynodon dactylon. Phytochemistry 29(12):3699–3703

    Article  CAS  Google Scholar 

  9. Yuan X et al (2021) The isolation, structure and fragmentation characteristics of natural truxillic and truxinic acid derivatives in abrus mollis leaves. Phytochemistry 181:112572

    Article  CAS  Google Scholar 

  10. Iman A et al (2005) Polymorphism of cinnamic and a-truxillic acids. Cryst Growth Design 5:2210–2217

    Article  Google Scholar 

  11. Cohen M, Schmidt G, Sonntag F (1964) Topochemistry. part ii. the photochemistry of trans-cinnamic acids. J Chem Soc (Resumed) 384:2000–2013

  12. Chi Y-M et al (2006) Anti-inflammatory activity of 4, 4-dihydroxy-α-truxillic acid. Biol Pharm Bull 29(3):489–493

    Article  CAS  Google Scholar 

  13. Steri R et al (2010) Truxillic acid derivatives act as peroxisome proliferator-activated receptor γ activators. Bioorg Med Chem Lett 20(9):2920–2923

    Article  CAS  Google Scholar 

  14. Krauze-Baranowska M (2002) Truxillic and truxinic acids-occurrence in plant kingdom. Acta Pol Pharm 59(5):403–410

    CAS  Google Scholar 

  15. Ahman A, Nissinen M (2006) Pyrogallarenes as alkali metal receptors: the role of cation–π interactions in complexation. Chem Commun (11):1209–1211

  16. Lecomte S, Chenon M-T (1996) NMR investigation of pefioxacin/cation/DNA interactions. Mg2+ and Ca2+ binding. Int J Pharmaceut 139(1–2):105–112

  17. Strugatsky D et al (2005) Genetic polymorphism and expression of a highly potent scorpion depressant toxin enable refinement of the effects on insect na channels and illuminate the key role of ASN-58. Biochemistry 44(25):9179–9187

    Article  CAS  Google Scholar 

  18. Garau Rossell´O C et al (2018) s-Tetrazine as a new binding unit in molecular recognition of anions. Chem Phys Lett 2003 vol. 370:7–13

  19. Muya JT, Isamura BK, Patouossa I, Nguyen MT (2020) Interplay between σ holes, anion…H-C, and cation- π interactions in dibromo[2, 2]paracyclophane complexes. J Phys Chem A 124(22):4379–4389

    Article  CAS  Google Scholar 

  20. Kolakkandy S, Pratihar S, Aquino AJ, Wang H, Hase WL (2014) Properties of complexes formed by Na+, Mg2+, and Fe2+ binding with benzene molecules. J Phys Chem A 118(40):9500–9511

    Article  CAS  Google Scholar 

  21. Petelski AN, Fonseca Guerra C (2019) Hydrogen-bonded rosettes of aminotriazines for selective-ion recognition. The J Phys Chem C 124(5):3352–3363

  22. Fujita S (1994) Unit subduced cycle indices for combinatorial enumeration. Journal of Graph Theory 18(4):349–371

    Article  Google Scholar 

  23. Politzer P, Murray JS (2015) Quantitative analyses of molecular surface electrostatic potentials in relation to hydrogen bonding and co-crystallization. Cryst Growth Des 15(8):3767–3774

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Local softness and chemical reactivity in the molecules CO, SCN and H2CO. J Mol Struct (Thoechem) 163:305–313

    Article  Google Scholar 

  25. Bader R, Nguyen-Dang T (1981) Advances in quantum chemistry. P.-OL¨owdin, Ed. (Academic, New York, 1981) 14:63

  26. Szalewicz K (2012) Symmetry-adapted perturbation theory of intermolecular forces. Wiley interdisciplinary reviews: computational molecular science 2(2):254–272

    CAS  Google Scholar 

  27. Shao Y, Wu J, Jiang Y (1996) Enumeration and symmetry of substitution isomers. J Phys Chem 100(37):15064–15067

    Article  CAS  Google Scholar 

  28. Rosenfeld VR, Klein DJ, Oliva JM (2012) Enumeration of polycarborane isomers: especially dicarboranes. J Math Chem 50(7)

  29. Baraldi I, Vanossi D (2000) Regarding enumeration of molecular isomers. J Chem Inf Comput Sci 40(2):386–398

    Article  CAS  Google Scholar 

  30. Diallo BN, Glenister M, Musyoka TM, Lobb K, Bishop OT (2021) SANCDB: an update on South African natural compounds and their readily available analogs. J Cheminform 13(1):1–14

  31. Nemba RM, Issofa P, Edamak A (2012) Combinatorial enumeration and symmetry characterization of homodisubtituted [2, 2] paracyclophane derivatives. Acta Chim Pharm Indica 2(1):15–23

    CAS  Google Scholar 

  32. Fujita S (1990) Unit subduced cycle indices with and without chirality fittingness for Ih group. an application to systematic enumeration of dodecahedrane derivatives. Bull Chem Soc Japan 63(10):2759–2769

  33. Fujita S (2016) Systematic enumeration and symmetries of cubane derivatives. Chem Rec 16(3):1116–1163

    Article  CAS  Google Scholar 

  34. Frisch M et al (2009) Gaussian 09, revision e. 01. Gaussian Inc., Wallingford, CT

  35. Lu T, Chen F (2012) MultiWFN: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  36. Hanson RM (2010) Jmol–a paradigm shift in crystallographic visualization. J Appl Crystallogr 43(5):1250–1260

    Article  CAS  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  38. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  Google Scholar 

  39. Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the performance of the M05–2x and M06–2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4(12):1996–2000

    Article  CAS  Google Scholar 

  40. Langenaeker W, Demel K, Geerlings P (1991) Quantum-chemical study of the Fukui function as a reactivity index: Part 2. electrophilic substitution on mono-substituted benzenes. J Mole Struct: THEOCHEM 234:329–342

  41. Kasende OE, Matondo A, Muzomwe M, Muya JT, Scheiner S (2014) Interaction between temozolomide and water: preferred binding sites. Comput Theor Chem 1034:26–31

    Article  CAS  Google Scholar 

  42. Sayyed FB, Suresh CH (2011) Quantitative assessment of substituent effects on cation-π interactions using molecular electrostatic potential topography. J Phys Chem A 115(33):9300–9307

    Article  CAS  Google Scholar 

  43. Gadre SR, Bhadane PK (1997) Patterns in hydrogen bonding via electrostatic potential topography. J Chem Phys 107(14):5625–5626

    Article  CAS  Google Scholar 

  44. Kasende OE, Matondo A, Muya JT, Scheiner S (2017) Interactions between temozolomide and guanine and its s and se-substituted analogues. Int J Quantum Chem 117(3):157–169

    Article  CAS  Google Scholar 

  45. Geerlings P, De Proft F (2008) Conceptual DFT: the chemical relevance of higher response functions. Phys Chem Chem Phys 10(21):3028–3042

    Article  CAS  Google Scholar 

  46. Fu R, Lu T, Chen F-W (2014) Comparing methods for predicting the reactive site of electrophilic substitution. Acta Phys Chim Sin 30(4):628–639

    Article  CAS  Google Scholar 

  47. Spicher S, Caldeweyher E, Hansen A, Grimme S (2021) Benchmarking London dispersion corrected density functional theory for noncovalent ion– π interactions. Phys Chem Chem Phys 23(20):11635–11648

    Article  CAS  Google Scholar 

  48. Alirezapour F, Khanmohammadi A (2020) The effect of cation–π interactions on the stability and electronic properties of anticancer drug altretamine: a theoretical study. Acta Crystallographica Section C: Structural Chemistry 76(10):982–991

    CAS  Google Scholar 

  49. Sharma H, Saha B, Bhattacharyya PK (2017) Sandwiches of n-doped diamondoids and benzene via lone pair–cation and cation–pi interaction: a DFT study. New J Chem 41:14420–14430

    Article  CAS  Google Scholar 

  50. Boys S, Bernardi F (1990) The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol Phys 19:553–566

  51. Trung NT, Khanh PN, Carvalho AJP, Nguyen MT (2019) Remarkable shifts of Csp2-H and O-H stretching frequencies and stability of complexes of formic acid with formaldehydes and thioformaldehydes. J Comput Chem 40(13):1387–1400

    Article  CAS  Google Scholar 

  52. Ceden˜o DL, Weitz E, Berces  A (2001) Bonding interactions in olefin (C2X4, X= H, F, Cl, Br, I, CN) iron tetracarbonyl complexes: role of the deformation energy in bonding and reactivity. The J Phys Chem A 105(34):8077–8085

  53. Kumar N, Saha S, Sastry GN (2021) Towards developing a criterion to characterize non-covalent bonds: a quantum mechanical study. Phys Chem Chem Phys 23(14):8478–8488

    Article  CAS  Google Scholar 

  54. Turney JM et al (2012) Psi4: an open-source ab initio electronic structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science 2(4):556–565

    CAS  Google Scholar 

  55. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34(16):1429–1437

  56. Emadak A, Patouossa I, Ws T (2019) New compounds derived from stereoisomers of 2,4-diphenylcyclobutane-1,3-dicarboxylic acids, 1,4- diphenylcyclobutane-2,3-dicarboxylic acids and their alkaloidal precursors, the truxillines: theoretical elucidation based on Polya’s counting theory. Int J Chem Sci 17:1–9

  57. Fujita S (1990) Enumerations of chemical structures by subduction of coset representations. correlation of unit subduced cycle indices to Polya’s cycle indices. J Math Chem 5(2):99–120

  58. Jiang L, Lai L (2002) CH..O hydrogen bonds at protein-protein interfaces. J Biol Chem 277(40):37732–37740

  59. Matta CF, Hern´andez-Trujillo J, Tang T-H, Bader RF (2003) Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals. Chem–A Euro J 9(9):1940–1951

  60. Matta CF (2006) Hydrogen–hydrogen bonding: the non-electrostatic limit of closed-shell interaction between two hydrogens 337–375

  61. Robertson KN, Knop O, Cameron TS (2003) CH…HC interactions in organoammonium tetraphenylborates: another look at dihydrogen bonds. Can J Chem 81(6):727–743

    Article  CAS  Google Scholar 

  62. Belkova NV, Shubina ES, Epstein LM (2005) Diverse world of unconventional hydrogen bonds. Acc Chem Res 38(8):624–631

    Article  CAS  Google Scholar 

  63. Klooster WT, Koetzle TF, Siegbahn PE, Richardson TB, Crabtree RH (1999) Study of the N-H…H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. J Am Chem Soc 121(27):6337–6343

    Article  CAS  Google Scholar 

  64. Green BS, Rejto M (1974) µ-truxinic acid. J Org Chem 39(22):3284–3285

    Article  CAS  Google Scholar 

  65. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20(1):129–154

    Article  CAS  Google Scholar 

  66. Grommet AB, Feller M, Klajn R (2020) Chemical reactivity under nanoconfinement. Nat Nanotechnol 15(4):256–271

    Article  CAS  Google Scholar 

  67. Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Conceptual DFT: chemistry from the linear response function. Chem Soc Rev 43(14):4989–5008

    Article  CAS  Google Scholar 

  68. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117(5):369–377

    Article  CAS  Google Scholar 

  69. Chattaraj P, Murthy TA, Giri S, Roy D (2007) A connection between softness and magnetizability. J Mol Struct (Thoechem) 813(1–3):63–65

    Article  CAS  Google Scholar 

  70. Kasende OE, Muya JT, de Paul N, Nziko V,  Scheiner S (2016) Hydrogen bonded and stacked geometries of the temozolomide dimer. Journal of Molecular Modeling 22(4):1–9

  71. Contreras RR, Fuentealba P, Galv´an M, Perez PA (1999) Direct evaluation of regional fukui functions in molecules. Chem Phys Lett 304 (5–6), 405–413

  72. Ol´ah J, Van Alsenoy C, Sannigrahi A (2002) Condensed fukui functions derived from stockholder charges: assessment of their performance as local reactivity descriptors. The J Phys Chem A 106(15):3885–3890

  73. Liu S, Rong C, Lu T (2014) Information conservation principle determines electrophilicity, nucleophilicity, and regioselectivity. J Phys Chem A 118(20):3698–3704

    Article  CAS  Google Scholar 

  74. Vijay D, Sastry GN (2010) The cooperativity of cation–π and ππ interactions. Chem Phys Lett 485(1–3):235–242

    Article  CAS  Google Scholar 

  75. Isamura BK, Lobb KA, Muya JT (2022) Regioselectivity, chemical bonding and physical nature of the interaction between imidazole and XAHs (X=H, F, Cl, Br, CH3, and A=S, Se, Te). Mole Phys 0(0):e2026511

  76. Stone AJ, Misquitta AJ (2009) Charge-transfer in symmetry-adapted perturbation theory. Chem Phys Lett 473(1–3):201–205

    Article  CAS  Google Scholar 

  77. Deng S, Wang Q, Ren P (2017) Estimating and modeling charge transfer from the SAPT induction energy. J Comput Chem 38(26):2222–2231

    Article  CAS  Google Scholar 

  78. Wu J-B et al (2003) Correlation between N 1s XPS binding energy and bond distance in metal amido, imido, and nitrido complexes. Inorg Chem 42(15):4516–4518

    Article  CAS  Google Scholar 

  79. Blanco M, Martın Pendas A, Francisco E (2005) Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput 1(6):1096–1109

  80. Shahbazian S (2018) Why bond critical points are not “bond” critical points. Chem–A Euro J 24(21):5401–5405

  81. Pend´as AM, Blanco M, Francisco E (2004) Two-electron integrations in the quantum theory of atoms in molecules. The J Chem Phys 120(10):4581–4592

  82. Bader R, Slee T, Cremer D, Kraka E (1983) Description of conjugation and hyperconjugation in terms of electron distributions. J Am Chem Soc 105(15):5061–5068

    Article  CAS  Google Scholar 

  83. Altun Z, Bleda EA, Trindle C (2021) Focal point evaluation of energies for tautomers and isomers for 3-hydroxy-2-butenamide: evaluation of competing internal hydrogen bonds of types –OH...O=, -OH…N, -NH…O=, and CH…X (X=O and N). Molecules 26 (9):2623

  84. Petrushenko I, Tikhonov N, Petrushenko K (2021) Hydrogen adsorption on pillar[6]arene: a computational study. Physica E 130:114719

    Article  CAS  Google Scholar 

  85. Jablonski M, Palusiak M (2012) Nature of a hydride–halogen bond. a SAPT-, QTAIM-, and NBO-based study. The J Phys Chem A 116(9):2322–2332

  86. Sanchez-Sanz G, Alkorta I, Elguero J (2011) Theoretical study of the HXYH dimers (X, Y= O, S, Se). hydrogen bonding and chalcogen–chalcogen interactions. Mole Phys 109(21):2543–2552

  87. Petrushenko I (2020) Hydrogen adsorption on Li+ and Na+ decorated coronene and corannulene: DFT, SAPT0, and IGM study

  88. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Bienfait K. Isamura is grateful to the Department of Chemistry at the Rhodes University and the Centre for High Performance Computing for having provided computing resources used to carry out this study.

Funding

This research was supported by the BEBUC scholarship system through the funding granted by Else-Kroener-Fresenius Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

B.K. Isamura and I. Patouossa prepared and analysed the data. B.K. Isamura performed quantum mechanics calculations and wrote the first draft of the manuscript. J.T. Muya and K.A. Lobb designed the study protocol and significantly contributed to improving the first draft. K.A. Lobb also provided computing resources. All the authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Bienfait Kabuyaya Isamura or Issofa Patouossa.

Ethics declarations

Consent for publication

All the co-authors have seen and approved the current manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabuyaya Isamura, B., Patouossa, I., Muya, J.T. et al. Unveiling the reactivity of truxillic and truxinic acids (TXAs): deprotonation, anion…H–O, cation…O and cation…\({\varvec{\pi}}\) interactions in TXA0…Y+ and TXA0…Z complexes (Y = Li, Na, K; Z = F, Cl, Br). Struct Chem 34, 97–112 (2023). https://doi.org/10.1007/s11224-022-01965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01965-5

Keywords

Navigation