Skip to main content
Log in

Scale of relative Lewis acidities of methyltrioxorhenium and its mono- and bisperoxo derivatives from their equilibria with pyridines; a density functional theory study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The Lewis acidity of methyltrioxorhenium (MTO) and its monoperoxo [A: MeReO2(η 2–O2)] and bisperoxo [B.H 2 O: MeReO(η 2–O2)2(H2O)] derivatives toward pyridine and its derivatives has been theoretically investigated. These compounds, presented in MTO/H2O2 system as one of the most versatile and useful systems, are believed to be active catalysts in oxidation processes. The excellent linear relationships were observed between the equilibrium constants (for the reactions MTO + N = MTO.N, A + N = A.N, and B.H 2 O + N = B.N + H2O; N = pyridine and its derivatives) and either the pK a values of the pyridine and its derivatives or the Hammett σ constants of the substituents on the pyridine. The slope of the plot of log K eq versus pyridines’ pK a and the Hammett ρ values suggests the acidity order as MTO < A < B.H 2 O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mijs WJ, de Jonge CR (1986) Organic syntheses by oxidation with metal compounds. Plenum Publishing Corporation, New York

    Book  Google Scholar 

  2. Jørgensen KA (1989) Transition-metal-catalyzed epoxidations. Chem Rev 89(3):431–458

    Article  Google Scholar 

  3. Lane BS, Burgess K (2003) Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem Rev 103(7):2457–2474

    Article  CAS  Google Scholar 

  4. Mukaiyama T, Yamada T (1995) Recent advances in aerobic oxygenation. Bull Chem Soc Jpn 68(1):17–35

    Article  CAS  Google Scholar 

  5. Sica D, Musumeci D, Zollo F, De Marino S (2001) Reactivity of steroidal dienes towards the methyltrioxorhenium/H2O2–urea oxidation system: isolation and characterization of new oxygenated steroids. Eur J Org Chem 19:3731–3739

    Article  Google Scholar 

  6. Sica D, Musumeci D, Zollo F, De Marino S (2001) A new route to polyoxygenate C and D rings of steroids by oxidation, 14-diene steroid with the methyltrioxorhenium–H2O2–urea system. J Chem Soc Perkin Trans 1(16):1889–1896

    Article  Google Scholar 

  7. Musumeci D, Sica D (2002) CH3ReO3-catalyzed oxidation of cholesta-5,7-dien-3β-yl acetate with the urea–hydrogen peroxide adduct under various conditions. Synthesis of the natural epoxy sterol 9α,11α-epoxy-5α-cholest-7-en-3β, 5,6β-triol. Steroids 67(7):661–668

    Article  CAS  Google Scholar 

  8. Al-Ajlouni AM, Espenson JH (1995) Epoxidation of styrenes by hydrogen peroxide as catalyzed by methylrhenium trioxide. J Am Chem Soc 117(36):9243–9250

    Article  CAS  Google Scholar 

  9. Al-Ajlouni AM, Espenson JH (1996) Kinetics and mechanism of the epoxidation of alkyl-substituted alkenes by hydrogen peroxide, catalyzed by methylrhenium trioxide. J Org Chem 61(12):3969–3976

    Article  CAS  Google Scholar 

  10. Adam W, Saha-Möller CR, Weichold O (2000) Epoxidation of trans-cyclooctene by methyltrioxorhenium/H2O2: reaction of trans-epoxide with the monoperoxo complex. J Org Chem 65(16):5001–5004

    Article  CAS  Google Scholar 

  11. Saladino R, Neri V, Checconi P, Celestino I, Nencioni L, Palamara AT, Crucianelli M (2013) Synthesis of 2-deoxy-1′-homo-N-nucleosides with anti-influenza activity by catalytic methyltrioxorhenium (MTO)/H2O2 oxyfunctionalization. Chem Eur J 19(7):2392–2404

    Article  CAS  Google Scholar 

  12. Qu S, Dang Y, Wen M, Wang ZX (2013) Mechanism of the methyltrioxorhenium-catalyzed deoxydehydration of polyols: a new pathway revealed. Chem Eur J 19(12):3827–3832

    Article  CAS  Google Scholar 

  13. Herrmann WA, Fischer RW, Marz DW (1991) Methyltrioxorhenium as catalyst for olefin oxidation. Angew Chem Int Ed Engl 30(12):1638–1641

    Article  Google Scholar 

  14. Owens GS, Arias J, Abu-Omar MM (2000) Rhenium oxo complexes in catalytic oxidations. Catal Today 55(4):317–363

    Article  CAS  Google Scholar 

  15. Herrmann WA, Kühn FE (1997) Organorhenium oxides. Acc Chem Res 30(4):169–180

    Article  CAS  Google Scholar 

  16. Espenson JH (1999) Atom-transfer reactions catalyzed by methyltrioxorhenium(VII)—mechanisms and applications. Chem Commun 6:479–488

    Article  Google Scholar 

  17. Romão CC, Kühn FE, Herrmann WA (1997) Rhenium(VII) oxo and imido complexes: synthesis, structures, and applications. Chem Rev 97(8):3197–3246

    Article  Google Scholar 

  18. Kühn FE, Scherbaum A, Herrmann WA (2004) Methyltrioxorhenium and its applications in olefin oxidation, metathesis and aldehyde olefination. J Organomet Chem 689(24):4149–4164

    Article  Google Scholar 

  19. Herrmann WA, Fischer RW, Scherer W, Rauch MU (1993) Methyltrioxorhenium(VII) as catalyst for epoxidations: structure of the active species and mechanism of catalysis. Angew Chem Ed Engl 32(8):1157–1160

    Article  Google Scholar 

  20. Herrmann WA, Fischer RW, Rauch MU, Scherer W (1994) Alkylrhenium oxides as homogeneous epoxidation catalysts: activity, selectivity, stability, deactivation. J Mol Catal 86(1):243–266

    Article  CAS  Google Scholar 

  21. Adam W, Mitchell CM (1996) Methyltrioxorhenium(VII)-catalyzed epoxidation of alkenes with the urea/hydrogen peroxide adduct. Angew Chem Int Ed Engl 35(5):533–535

    Article  CAS  Google Scholar 

  22. Boehlow TR, Spilling CD (1996) The regio- and stereo-selective epoxidation of alkenes with methyl trioxorhenium and urea–hydrogen peroxide adduct. Tetrahedron Lett 37(16):2717–2720

    Article  CAS  Google Scholar 

  23. Rudolph J, Reddy KL, Chiang JP, Sharpless KB (1997) Highly efficient epoxidation of olefins using aqueous H2O2 and catalytic methyltrioxorhenium/pyridine: pyridine-mediated ligand acceleration. J Am Chem Soc 119(26):6189–6190

    Article  CAS  Google Scholar 

  24. Copéret C, Adolfsson H, Sharpless KB (1997) A simple and efficient method for epoxidation of terminal alkenes. Chem Commun 16:1565–1566

    Article  Google Scholar 

  25. Herrmann WA, Kratzer RM, Ding H, Thiel WR, Glas H (1998) Methyltrioxorhenium/pyrazole—a highly efficient catalyst for the epoxidation of olefins. J Organomet Chem 555(2):293–295

    Article  CAS  Google Scholar 

  26. Adolfsson H, Converso A, Sharpless KB (1999) Comparison of amine additives most effective in the new methyltrioxorhenium-catalyzed epoxidation process. Tetrahedron Lett 40(21):3991–3994

    Article  CAS  Google Scholar 

  27. Vaino AR (2000) Sodium percarbonate as an oxygen source for MTO catalyzed epoxidations. J Org Chem 65(13):4210–4212

    Article  CAS  Google Scholar 

  28. Ferreira P, Xue W-M, Bencze É, Herdtweck E, Kühn FE (2001) Bidentate Lewis base adducts of methyltrioxorhenium(VII) and their application in catalytic epoxidation. Inorg Chem 40(23):5834–5841

    Article  CAS  Google Scholar 

  29. Sabater MaJ, Domine ME, Corma A (2002) Highly stable chiral and achiral nitrogen–base adducts of methyltrioxorhenium(VII) as catalysts in the epoxidation of alkenes. J Catal 210(1):192–197

    Article  CAS  Google Scholar 

  30. Kühn FE, Santos AM, Roesky PW, Herdtweck E, Scherer W, Gisdakis P, Yudanov IV, Di Valentin C, Rösch N (1999) Trigonal–bipyramidal Lewis base adducts of methyltrioxorhenium(VII) and their bisperoxo congeners: characterization, application in catalytic epoxidation, and density functional mechanistic study. Chem Eur J 5(12):3603–3615

    Article  Google Scholar 

  31. Santos AM, Kühn FE, Xue W-M, Herdtweck E (2000) Syntheses and characterisation of methyltrioxorhenium adducts of low-valence organometallic Lewis bases. J Chem Soc Dalton Trans 20:3570–3574

    Article  Google Scholar 

  32. Nabavizadeh SM (2003) Adduct formation of methyltrioxorhenium with mono- and bidentate nitrogen donors: formation constants. Inorg Chem 42(13):4204–4208

    Article  CAS  Google Scholar 

  33. Nabavizadeh SM, Rashidi M (2006) Lewis acidity of methyltrioxorhenium(VII) (MTO) based on the relative binding strengths of N-donors. J Am Chem Soc 128(1):351–357

    Article  CAS  Google Scholar 

  34. Frisch MJ, Rega N, Petersson GA, Trucks GW, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Burant JC, Nakajima T, Honda Y, Kitao O, Schlegel HB, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Millam JM, Bakken V, Adamo C, Jaramillo J, Gomperts R, Scuseria GE, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Iyengar SS, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Robb MA, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Tomasi J, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cheeseman JR, Ortiz JV, Cui Q, Baboul AG, Barone V, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Montgomery JA Jr, Martin RL, Fox DJ, Mennucci B, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Vreven T, Wong MW, Cossi M, Gonzalez C, Pople JA, Kudin KN, Scalmani G (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford

    Google Scholar 

  35. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  36. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28(3):213–222

    Article  CAS  Google Scholar 

  37. Ehlers A, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler K, Stegmann R, Veldkamp A, Frenking G (1993) A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc–Cu, Y–Ag and La–Au. Chem Phys Lett 208(1):111–114

    Article  CAS  Google Scholar 

  38. Wang W-D, Espenson JH (1998) Effects of pyridine and its derivatives on the equilibria and kinetics pertaining to epoxidation reactions catalyzed by methyltrioxorhenium. J Am Chem Soc 120(44):11335–11341

    Article  CAS  Google Scholar 

  39. Herrmann WA, Kiprof P, Rypdal K, Tremmel J, Blom R, Alberto R, Behm J, Albach RW, Bock H (1991) Multiple bonds between main-group elements and transition metals. 86. Methyltrioxorhenium(VII) and trioxo (5-pentamethylcyclopentadienyl) rhenium(VII): structures, spectroscopy and electrochemistry. J Am Chem Soc 113(17):6527–6537

    Article  CAS  Google Scholar 

  40. Hosseini FN, Nabavizadeh SM, Azimi G (2013) Theoretical study of the solvent effect on the methyltrioxorhenium/hydrogen peroxide system. J Solut Chem 42(11):2137–2148

    Article  CAS  Google Scholar 

  41. Gonzales JM, Distasio R, Periana RA, Goddard WA, Oxgaard J (2007) Methylrhenium trioxide revisited: mechanisms for nonredox oxygen insertion in an M–CH3 bond. J Am Chem Soc 129(51):15794–15804

    Article  CAS  Google Scholar 

  42. Costa PJ, Calhorda MJ, Bossert J, Daniel C, Romão CC (2006) Photochemistry of methyltrioxorhenium revisited: a DFT/TD-DFT and CASSCF/MS-CASPT2 theoretical study. Organometallics 25(22):5235–5241

    Article  CAS  Google Scholar 

  43. Wu YD, Sun J (1998) Transition structures of epoxidation by CH3Re(O)2(O2) and CH3Re(O)(O2)2 and their water adducts. J Org Chem 63:1752–1753

    Article  CAS  Google Scholar 

  44. Herrmann WA, Fischer RW, Scherer W, Rauch MU (1993) Methyltrioxorhenium(VII) as catalyst for epoxidations: structure of the active species and mechanism of catalysis. Angew Chem Int Ed Engl 32(8):1157–1160

    Article  Google Scholar 

  45. Spencer J, Ganunis TF, Zafar AI, Salata CM, Gupta S, Puppala S, Eppley HJ, Ealy JL, Yoder CH (1991) Enthalpy and entropy contributions to solvent effects on adduct formation. J Phys Chem 95(12):4910–4915

    Article  CAS  Google Scholar 

  46. Nabavizadeh SM, Rashidi M (2007) Acidity of osmium tetroxide (OsO4) towards coordination with pyridine and its derivatives. Polyhedron 26(7):1476–1482

    Article  CAS  Google Scholar 

  47. Martell AE, Smith RM (1974) Critical stability constants, vol 1. Springer, Berlin

    Google Scholar 

  48. Kerr J, Lide D (2000) CRC handbook of chemistry and physics 1999–2000: a ready-reference book of chemical and physical data. In: CRC handbook of chemistry and physics, 81st edn. CRC Press, Boca Raton

  49. Nabavizadeh SM, Akbari A, Rashidi M (2005) Thermodynamic study of the binding of methyltrioxorhenium with pyridine and its derivatives in benzene solution. Eur J Inorg Chem 12:2368–2375

    Article  Google Scholar 

  50. Hansch C, Leo A, Taft R (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91(2):165–195

    Article  CAS  Google Scholar 

  51. Gasperini M, Ragaini F (2004) Method of establishing the Lewis acidity of a metal fragment based on the relative binding strengths of Ar-BIAN ligands (Ar-BIAN = bis(aryl) acenaphthenequinonediimine). Organometallics 23(5):995–1001

    Article  CAS  Google Scholar 

  52. Szintay G, Horváth A (2000) Temperature dependence study of five-coordinate complex formation of zinc(II) octaethyl and tetraphenylporphyrin. Inorg Chim Acta 310(2):175–182

    Article  CAS  Google Scholar 

  53. Glendening E, Reed A, Carpenter J, Weinhold F (2004) NBO Version 3.1. In: Gaussian 03, Revision, D. 01. Gaussian, Inc., Wallingford

Download references

Acknowledgments

Financial support of the Shiraz Branch, Islamic Azad University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Niroomand Hosseini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedaghatzadeh, V., Hosseini, F.N. Scale of relative Lewis acidities of methyltrioxorhenium and its mono- and bisperoxo derivatives from their equilibria with pyridines; a density functional theory study. Struct Chem 26, 35–45 (2015). https://doi.org/10.1007/s11224-014-0462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0462-y

Keywords

Navigation