Skip to main content
Log in

Structural analysis of (R)-3-methylcyclohexanone conformers

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic circular dichroism (CD) spectra as a function of temperature for R-( +)-3-methylcyclohexanone (R3MCH) were reported in 11 solvents of wide polarity range for the optically active n → π* transition band. An asymptotic approach on temperature-dependent CD data was utilized to determine conformer’s CD signal and population, in addition to determining enthalpy, entropy, and Gibbs free energy differences between the equatorial and axial conformers. The evaluated thermodynamic constants were compared with values reported in literature and found to be insensitive to solvent polarity. By comparing CD spectra in vapor and solution phases, solvent effects on CD spectra were also investigated and observed to correlate with solvent polarity and nature. Also, DFT calculations of the R3MCH dipole moment components and magnitude for the individual equatorial (EQ) and axial (AX) conformers were performed by employing a hybrid set of type B3LYP with basis set aug-cc-pVTZ and within the framework of the polarizable continuum model. The calculated dipole moment magnitudes of the dominant conformers in different solvents were observed to linearly correlate with solvent polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The author confirms that the data supporting the findings of this study are available within the article.

Code availability

All computations were performed with Gaussian 09 program. Gaussian 09 program can be obtained under academic or commercial license from Gaussian, Inc. (https://gaussian.com/).

References

  1. Lightner DA, Hurst JE (2000) Organic conformational analysis and stereochemistry from circular dichroism spectroscopy. Wiley-VCH, Weinheim

    Google Scholar 

  2. Seager SS, Slabaugh MR, Hansen MS (2021) Chemistry for today: general, organic, and biochemistry, 10th edn. Cengage Learning, Boston

    Google Scholar 

  3. Singh RD, Keiderling TA (1981) Vibrational circular dichroism of 3-methylcyclohexanone. Fixed partial charge calculations. J Chem Phys 74:5347–5356

    Article  CAS  Google Scholar 

  4. Lahiri P, Wiberg K, Vaccaro P (2013) Intrinsic optical activity and conformational flexibility: the role of size-dependent ring morphology in model cycloketones. J Phys Chem A 117:12382–12400

    Article  CAS  Google Scholar 

  5. Alenaizan A, Al-Basheer W, Musa MM (2017) Solvent, temperature and concentration effects on the optical rotatory dispersion of (R)-3-methylcyclohexanone. J Mol Struc 1130:19–25

    Article  CAS  Google Scholar 

  6. Cornish T, Baer T (1990) Identification of conformational isomers of methyl-substituted cyclohexanone and tetrahydropyran frozen in a molecular beam. J Phys Chem 94:2852–2857

    Article  CAS  Google Scholar 

  7. Potts A, Baer T (1996) Spectroscopic gas phase determination of ΔH° [axial/equatorial] for 3-Methyl cyclohexanone. J Chem Phys 105:7605

    Article  CAS  Google Scholar 

  8. Devlin F, Stephens P (1999) Conformational analysis using Ab Initio vibrational spectroscopy: 3-methylcyclohexanone. J Am Chem Soc 121:7413–7414

    Article  CAS  Google Scholar 

  9. Kim D, Baer T (2000) Gas-phase measurement of ΔH° between axial and equatorial conformations of 3-methylcyclopentanone. Chem Phys 256:251–258

    Article  CAS  Google Scholar 

  10. Li R, Sullivan R, Al-Basheer W, Pagni RM, Compton RN (2006) Linear and nonlinear circular dichroism of R-(+)-3-methylcyclopentanone. J Chem Phys 125:144304

    Article  CAS  Google Scholar 

  11. Hincliffe A (2008) Chemical modelling: applications and theory, Royal Society of Chemistry, 1st edition

  12. Al-Basheer W (2014) Investigating (R)-3-methylcyclopentanone conformers using temperature-dependent Raman spectroscopy. J Appl Spect 81:325

    Article  Google Scholar 

  13. Al-Basheer W (2016) Matrix-isolation IR spectroscopy of R-(+)-3-methylcyclopentanone in para-hydrogen crystal. J Phys Org Chem 29:14–20

    Article  Google Scholar 

  14. Al-Basheer W (2012) Solvent effects on IR modes of (R)-3-methylcyclopentanone conformers: a computational investigation. J Sol Chem 41:1495–1506

    Article  CAS  Google Scholar 

  15. Abraham R, Chadwick D, Griffiths L, Sancassan F (1980) Direct lanthanide-induced shift NMR determination of conformer populations in substituted cyclohexanones. J Am Chem Soc 102:5128–5130

    Article  CAS  Google Scholar 

  16. Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Springer, NYC

    Book  Google Scholar 

  17. Crawford T, Tam M, Abrams M (2007) The current state of ab initio calculations of optical rotation and electronic circular dichroism spectra. J Phys Chem A 111:12057–12068

    Article  CAS  Google Scholar 

  18. Polavarapu PL (2002) Optical rotation: recent advances in determining the absolute configuration. Chirality 14:768–781

    Article  CAS  Google Scholar 

  19. Berova N, Polavarapu P, Nakanishi K, Woody R (eds) (2012) Comprehensive chiroptical spectroscopy. Wiley, NYC

    Google Scholar 

  20. Lightner DA, Crist BV (1979) Conformational analysis of (+)-(3R)-Methylcyclohexanone from temperature-dependent circular dichroism measurements. Appl Spectrosc 33:307–310

    Article  CAS  Google Scholar 

  21. Polavarapu PL, Petrovic A, Wang F (2003) Intrinsic rotation and molecular structure. Chirality 15:S143–S149

    Article  CAS  Google Scholar 

  22. Wiberg K, Wang Y, Murphy M, Vaccaro P (2004) Temperature dependence of optical rotation: α-pinene, β-pinene pinane, camphene, camphor and fenchone. J Phys Chem A 108:5559–5563

    Article  CAS  Google Scholar 

  23. Dimroth K, Reichardt C, Siepmann T, Bohlmann F (1963) Über Pyridinium-N-phenol-betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln. Liebigs Ann Chem 661:1–37

    Article  CAS  Google Scholar 

  24. Kamlet MJ, Abboud JL, Taft RW (1977) The solvatochromic comparison method. 6. The π* scale of solvent polarities. J Am Chem Soc 99:6027–6038

    Article  CAS  Google Scholar 

  25. Reichardt C (1992) Solvatochromism, thermochromism, piezochromism, halochromism, and chiro-solvatochromism of pyridinium N-phenoxide betaine dyes. Chem Soc Rev 21:147–153

    Article  CAS  Google Scholar 

  26. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry, 4th edn. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  27. Marcus Y (1998) The properties of solvents. Wiley, Chichester, UK

    Google Scholar 

  28. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  29. Mardirossian N, Gordon MH (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372

    Article  CAS  Google Scholar 

  30. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian09, Revision D.01, Gaussian, Inc., Wallingford CT

  32. Grozema FC, Van Duijnen PT (1998) Solvent effects on the π* ← n transition of acetone in various solvents: direct reaction field calculations. J Phys Chem A 102:7984–7989

    Article  CAS  Google Scholar 

  33. Longhi G, Gangemi R, Lebon F, Castiglioni E, Abbate S, Pultz VM, Lightner DA (2004) A comparative study of overtone CH-stretching vibrational circular dichroism spectra of fenchone and camphor. J Phys Chem A 108:5338–5352

    Article  CAS  Google Scholar 

  34. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58:1486–1493

    Article  CAS  Google Scholar 

  35. Ka S, Oh JJ (2010) Dipole moment of 3-methylcyclohexanone. Bull Korean Chem Soc 31:517–519

    Article  CAS  Google Scholar 

  36. Ka S, Kim J, Oh JJ (2011) Dipole moments of methyl-substituted cyclohexanone. Bull Korean Chem Soc 32:344–346

    Article  CAS  Google Scholar 

Download references

Funding

The support was provided by the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals under Research Grant (#DF191010).

Author information

Authors and Affiliations

Authors

Contributions

W. Al-Basheer was responsible for the overall investigations.

Corresponding author

Correspondence to Watheq Al-Basheer.

Ethics declarations

Conflict of interest

The author declares competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Basheer, W. Structural analysis of (R)-3-methylcyclohexanone conformers. Struct Chem 33, 949–960 (2022). https://doi.org/10.1007/s11224-022-01914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01914-2

Keywords

Navigation