Skip to main content
Log in

Formation of bifunctional cross-linked products due to reaction of NAMI-A with DNA bases – a DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

It is reported that NAMI-A and other Ru-anticancer complexes preferably bind with the N7 site of guanine and can also form DNA inter-strand cross-links. Therefore, in order to understand the DNA cross-link formation capability of NAMI-A, we have investigated here the structure and energetics of the reactions of the GN7-NAMI-A (a monofunctional adduct of NAMI-A with the N7 site of guanine) with the N3, N7, and O6 sites of guanine; the N1, N3, and N7 sites of adenine; the O2 and N3 sites of cytosine; and the O2 and O4 sites of thymine, using the M06-2X functional of density functional theory. It is found that the GN7-NAMI-A can form stable cross-linked products at all the sites studied here except at the N3 site of cytosine and O2 site of thymine. The calculated reaction free energies and reaction enthalpies indicate that the N3 site of adenine (AN3) and N7 site of guanine (GN7) are most exothermic among all the studied reactions. This study shows that NAMI-A would favorably form the cross-linked products involving the N7 site of guanine at one side and the N7 site of guanine or the N3 site of adenine at the other side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Mishina Y, Duguid EM, He C (2006) Direct reversal of DNA alkylation damage. Chem Rev 106(2):215–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gates KS (2009) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 22(11):1747–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cadet J, Douki T, Ravanat J-L (2010) Oxidatively generated base damage to cellular DNA. Free Radical Biol Med 49(1):9–21

    Article  CAS  Google Scholar 

  4. Meikrantz W, Bergom MA, Memisoglu A, Samson L (1998) O6-alkylguanine DNA lesions trigger apoptosis. Carcinogenesis 19(2):369–372

    Article  CAS  PubMed  Google Scholar 

  5. Shukla P, Jena N, Mishra P (2011) Quantum theoretical study of molecular mechanisms of mutation and cancer-a review. Proc Natl Acad Sci India Sect A 81(Part 2):79–98

  6. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447(7147):941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo M, Tan Y, Chen W, Hu B, Wang Z, Zhu D, Jiao H, Duan C, Zhu Y, Wang H (2021) Clinical efficacy of temozolomide and its predictors in aggressive pituitary tumors and pituitary carcinomas: a systematic review and meta-analysis. Front Neurol 12:959

    Google Scholar 

  8. Sochacka-Ćwikła A, Mączyński M, Regiec A (2022) FDA-approved drugs for hematological malignancies - the last decade review. Cancers 14(1):87

    Article  CAS  Google Scholar 

  9. Galanski M (2006) Recent developments in the field of anticancer platinum complexes. Recent Pat Anti-Cancer Drug Discov 1(2):285–295

    Article  CAS  Google Scholar 

  10. Galanski M, Jakupec MA, Keppler BK (2005) Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem 12(18):2075–2094

    Article  CAS  PubMed  Google Scholar 

  11. Pages BJ, Ang DL, Wright EP, Aldrich-Wright JR (2015) Metal complex interactions with DNA. Dalton Trans 44(8):3505–3526

    Article  CAS  PubMed  Google Scholar 

  12. Allardyce CS, Dyson PJ (2016) Metal-based drugs that break the rules. Dalton Trans 45(8):3201–3209

    Article  CAS  PubMed  Google Scholar 

  13. Shah PK, Shukla P (2020) Effect of axial ligands on the mechanisms of action of Ru (III) complexes structurally similar to NAMI-A: a DFT study. Struct Chem 31(2):679–689

    Article  CAS  Google Scholar 

  14. Shah PK, Shukla P (2020) A DFT study of reactions of Ru (III) anticancer drug KP1019 with 8-oxoguanine and 8-oxoadenine. Struct Chem 31(5):2087–2092

    Article  CAS  Google Scholar 

  15. Gossens C, Tavernelli I, Rothlisberger U (2007) Structural and energetic properties of organometallic ruthenium (II) diamine anticancer compounds and their interaction with nucleobases. J Chem Theory Comput 3(3):1212–1222

    Article  CAS  PubMed  Google Scholar 

  16. Brabec V, Nováková O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Updates 9(3):111–122

    Article  CAS  Google Scholar 

  17. Gossens C, Tavernelli I, Rothlisberger U (2009) Binding of organometallic ruthenium (II) anticancer compounds to nucleobases: a computational study. J Phys Chem A 113(43):11888–11897

    Article  CAS  PubMed  Google Scholar 

  18. Groessl M, Tsybin YO, Hartinger CG, Keppler BK, Dyson PJ (2010) Ruthenium versus platinum: interactions of anticancer metallodrugs with duplex oligonucleotides characterised by electrospray ionisation mass spectrometry. J Biol Inorg Chem 15(5):677–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Futera Z, Platts JA, Burda JV (2012) Binding of piano-stool Ru (II) complexes to QM/MM study. J Comput Chem 33(26):2092–2101

    Article  CAS  PubMed  Google Scholar 

  20. Futera Z, Burda JV (2014) Reaction mechanism of Ru (II) piano-stool complexes: umbrella sampling QM/MM MD study. J Comput Chem 35(19):1446–1456

    Article  CAS  PubMed  Google Scholar 

  21. Brabec V, Kasparkova J (2018) Ruthenium coordination compounds of biological and biomedical significance DNA binding agents. Coord Chem Rev 376:75–94

    Article  CAS  Google Scholar 

  22. Kostova I (2006) Ruthenium complexes as anticancer agents. Curr Med Chem 13(9):1085–1107

    Article  CAS  PubMed  Google Scholar 

  23. Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bergamo A, Sava G (2011) Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans 40(31):7817–7823

    Article  CAS  PubMed  Google Scholar 

  25. Bergamo A, Gaiddon C, Schellens J, Beijnen J, Sava G (2012) Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J Inorg Biochem 106(1):90–99

    Article  CAS  PubMed  Google Scholar 

  26. Alessio E, Messori L (2019) NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry. Molecules 24(10):1995

  27. Bacac M, Hotze AC, van der Schilden K, Haasnoot JG, Pacor S, Alessio E, Sava G, Reedijk J (2004) The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation. J Inorg Biochem 98(2):402–412

    Article  CAS  PubMed  Google Scholar 

  28. Bouma M, Nuijen B, Jansen MT, Sava G, Flaibani A, Bult A, Beijnen JH (2002) A kinetic study of the chemical stability of the antimetastatic ruthenium complex NAMI-A. Int J Pharm 248(1–2):239–246

    Article  CAS  PubMed  Google Scholar 

  29. Chatlas J, Van Eldik R, Keppler B (1995) Spontaneous aquation reactions of a promising tumor inhibitor trans-imidazolium-tetrachlorobis (imidazole) ruthenium (III), trans-HIm [RuCl4 (Im) 2]. Inorg Chim Acta 233(1–2):59–63

    Article  CAS  Google Scholar 

  30. Sava G, Bergamo A, Zorzet S, Gava B, Casarsa C, Cocchietto M, Furlani A, Scarcia V, Serli B, Iengo E (2002) Influence of chemical stability on the activity of the antimetastasis ruthenium compound NAMI-A. Eur J Cancer 38(3):427–435

    Article  CAS  PubMed  Google Scholar 

  31. Cebrian-Losantos B, Reisner E, Kowol CR, Roller A, Shova S, Arion VB, Keppler BK (2008) Synthesis and reactivity of the aquation product of the antitumor complex trans-[RuIIICl4 (indazole) 2]−. Inorg Chem 47(14):6513–6523

    Article  CAS  PubMed  Google Scholar 

  32. Bešker N, Coletti C, Marrone A, Re N (2008) Aquation of the ruthenium-based anticancer drug NAMI-A: a density functional study. J Phys Chem B 112(13):3871–3875

    Article  PubMed  CAS  Google Scholar 

  33. Chen J, Chen L, Liao S, Zheng K, Ji L (2007) A theoretical study on the hydrolysis process of the antimetastatic ruthenium (III) complex NAMI-A. J Phys Chem B 111(27):7862–7869

    Article  CAS  PubMed  Google Scholar 

  34. Chen J, Chen L, Liao S, Zheng K, Ji L (2007) The hydrolysis process of the anticancer complex [ImH][trans-RuCl 4 (Im) 2]: a theoretical study. Dalton Trans 32:3507–3515

    Article  CAS  Google Scholar 

  35. Vargiu AV, Robertazzi A, Magistrato A, Ruggerone P, Carloni P (2008) The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT− PCM calculations. J Phys Chem B 112(14):4401–4409

    Article  CAS  PubMed  Google Scholar 

  36. Pluim D, van Waardenburg RC, Beijnen JH, Schellens JH (2004) Cytotoxicity of the organic ruthenium anticancer drug NAMI-A is correlated with DNA binding in four different human tumor cell lines. Cancer Chemother Pharmacol 54(1):71–78

    Article  CAS  PubMed  Google Scholar 

  37. Ambrosek D, Loos P-F, Assfeld X, Daniel C (2010) A theoretical study of Ru (II) polypyridyl DNA intercalators: structure and electronic absorption spectroscopy of [Ru (phen) 2 (dppz)] 2+ and [Ru (tap) 2 (dppz)] 2+ complexes intercalated in guanine–cytosine base pairs. J Inorg Biochem 104(9):893–901

    Article  CAS  PubMed  Google Scholar 

  38. Novakova O, Kasparkova J, Vrana O, van Vliet PM, Reedijk J, Brabec V (1995) Correlation between cytotoxicity and DNA binding of polypyridyl ruthenium complexes. Biochemistry 34(38):12369–12378

    Article  CAS  PubMed  Google Scholar 

  39. van Vliet PM, Toekimin SM, Haasnoot JG, Reedijk J, Nováková O, Vrána O, Brabec V (1995) mer-[Ru (terpy) Cl3](terpy= 2, 2′: 6′, 2 ″-terpyridine) shows biological activity, forms interstrand cross-links in DNA and binds two guanine derivatives in a trans configuration. Inorg Chim Acta 231(1–2):57–64

    Article  Google Scholar 

  40. Malina J, Novakova O, Keppler BK, Alessio E, Brabec V (2001) Biophysical analysis of natural, double-helical DNA modified by anticancer heterocyclic complexes of ruthenium (III) in cell-free media. J Biol Inorg Chem 6(4):435–445

    Article  CAS  PubMed  Google Scholar 

  41. Shah PK, Bhattacharjee K, Shukla PK (2016) Mechanisms of reactions of Ru (iii)-based drug NAMI-A and its aquated products with DNA purine bases: a DFT study. RSC Adv 6(114):113620–113629

    Article  CAS  Google Scholar 

  42. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoret Chem Acc 120(1):215–241

    Article  CAS  Google Scholar 

  43. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001

    Article  CAS  Google Scholar 

  44. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681

    Article  CAS  PubMed  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2010) Gaussian 09 Rev. C.01. Wallingford, CT

  46.  Dennington R, Keith T, Millam J (2009) GaussView, version 5

  47. Carpenter J, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (Thoechem) 169:41–62

    Article  Google Scholar 

  48. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735–746

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the general computational facility of the Department of Physics, Assam University, Silchar.

Author information

Authors and Affiliations

Authors

Contributions

P. K. Shah: performing simulation, data collection, and partial contribution to the first draft of the manuscript. P.K. Shukla: planning and supervision of the research work, analysis of the results, and writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pradeep Kumar Shukla.

Ethics declarations

Ethics approval

This article does not contain any studies involving animals performed by any of the authors.

Consent to participate

This article does not contain any studies involving animals performed by any of the authors.

Consent for publication

All the authors mentioned in the manuscript have given consent for submission and subsequent publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, P.K., Shukla, P.K. Formation of bifunctional cross-linked products due to reaction of NAMI-A with DNA bases – a DFT study. Struct Chem 33, 807–814 (2022). https://doi.org/10.1007/s11224-022-01897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01897-0

Keywords

Navigation