Skip to main content
Log in

Theoretical investigation of the complexation, structural, and electronic properties of complexes between oseltamivir drug and cucurbit[n = 6–9]urils

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structural geometries of cucurbit[n]uril CB[n] with n = 6–9 and their complexes with oseltamivir (OST) drug were obtained using the density functional theory computations. The stationary points of the most stable complexes were confirmed using vibrational frequency calculation. The complexation energies and electronic properties of CB[n]/OST complexes were investigated. The calculated results indicate that the intermolecular interactions in all the studied complexes occur via a large number of dipole–dipole interactions, especially hydrogen bonds between oxygen atoms of CB[n] and hydrogen atoms of amine of oseltamivir drug. The negative complexation energies of CB[n]/OST complexes in both gas and water phases indicate that the host–guest complexes are exothermic process and the complexes are more stable than its bare CB[n]. In addition, the CB[7]/OST complex is more stable than that of all studied CB[n]/OST complexes. The frequency calculation results of the most stable complexes for each of CBs indicate that complexations occur via a spontaneous process. The NBO analysis of complexes shows the transferring of partial charge from CB[n]s to oseltamivir which correspond to their MEP contours. The HOMO and the LUMO orbitals are localized on the oseltamivir in CB[n]/OST complexes. After drug complexation, the electronic properties also display that the energy gaps of CB[n] are significantly changed. All of the complexation properties point out that CB[n]s can act as a host for appropriately oseltamivir guest, even in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not applicable (all data generated or analyzed during this study are included in this published article).

References

  1. Webber MJ, Langer R (2017) Chem Soc Rev 46:6600–6620

    Article  CAS  PubMed  Google Scholar 

  2. Miskolczy Z, Megyesi M, Tarkanyi G, Mizsei R, Biczok L (2011) Org Biomol Chem 9:1061–1070

    Article  CAS  PubMed  Google Scholar 

  3. Cong H, Li CR, Xue SF, Tao Z, Zhub QJ, Wei G (2011) Org Biomol Chem 9:1041–1046

    Article  CAS  PubMed  Google Scholar 

  4. Krause-Heuer AM, Grant MP, Orkey N, Aldrich-Wright JR (2008) Aust J Chem 61:675–681

    Article  CAS  Google Scholar 

  5. Kemp S, Wheate NJ, Wang S, Collins JG, Ralph SF, Day AI, Higgins VJ, Aldrich-Wright JR (2007) J Biol Inorg Chem 12:969–979

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Ma PX (2013) Adv Drug Deliv Rev 65:1215–1233

    Article  CAS  PubMed  Google Scholar 

  7. Bani-Yaseen AD, Mo’ala A (2014) Spectrochim Acta A 131:424–431

    Article  CAS  Google Scholar 

  8. Gallego-Yerga L, de la Torre C, Sansone F, Casnati A, Mellet CO, García Fernandez JM, Cena V (2021) Carbohydr Polym 252:117135

  9. Wang J, Ding X, Guo X (2019) Adv Colloid Interface Sci 269:187–202

    Article  CAS  PubMed  Google Scholar 

  10. Basilotta R, Mannino D, Filippone A, Casili G, Prestifilippo A, Colarossi L, Raciti G, Esposito E, Campolo M (2021) Molecules 26:3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muzzalupo R, Nicoletta FP, Trombino S, Cassano R, Iemma F, Picci (2007) Colloids Surf B 58:197–202

  12. Kemp S, Wheate NJ, Stootman FH, Aldrich-Wright JR (2007) Supramol Chem 19:475–484

    Article  CAS  Google Scholar 

  13. Shchepotina EG, Pashkina EA, Yakushenko EV, Kozlov VA (2011) Nanotechnol Russ 6:773–779

    Article  Google Scholar 

  14. Walker S, Oun R, McInnes FJ, Wheate NJ (2011) Isr J Chem 51:616–624

    Article  CAS  Google Scholar 

  15. Wheate NJ, Limantoro C (2016) Supramol Chem 28:849–856

    Article  CAS  Google Scholar 

  16. Suvitha A, Venkataramanan NS, Mizuseki H, Kawazoe Y, Ohuchi N (2010) J Incl Phenom Macrocycl Chem 66:213–218

    Article  CAS  Google Scholar 

  17. Behrend R, Meyer E, Rusche F (1905) Justus Liebigs Ann Chem 339:1–37

    Article  Google Scholar 

  18. Freeman WA, Mock WL, Shih NY (1981) J Am Chem Soc 103:7367–7368

    Article  CAS  Google Scholar 

  19. Kim J, Jung I-S, Kim S-Y, Lee E, Kang J-K, Sakamoto S, Yamaguch K, Kim K (2000) J Am Chem Soc 122:540–541

    Article  CAS  Google Scholar 

  20. Uzunova VD, Cullinane C, Brix K, Nau WM, Day AI (2010) Org Biomol Chem 8:2037–2042

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Buck DP, Morris DL, Pourgholami MH, Day AI, Collins JG (2008) Org Biomol Chem 6:4509–4515

    Article  CAS  PubMed  Google Scholar 

  22. Wheate NJ (2008) J Inorg Biochem 102:2060–2066

    Article  CAS  PubMed  Google Scholar 

  23. Corda E, Hernandez M, Sanchez-Cortes S, Sevilla P (2018) Colloids Surf A: Physicochem Eng Asp 557:66–75

    Article  CAS  Google Scholar 

  24. Jeon YJ, Kim S-Y, Ko YH, Sakamoto S, Yamaguchi K, Kim K (2005) Org Biomol Chem 3:2122–2125

    Article  CAS  PubMed  Google Scholar 

  25. Nojini ZB, Yavari F, Bagherifar S (2012) J Mol Liq 166:53–61

    Article  CAS  Google Scholar 

  26. Sabet M, Ganji MD (2013) J Mol Model 19:4013–4023

    Article  CAS  PubMed  Google Scholar 

  27. Assaf KI, Nau WM (2015) Chem Soc Rev 44:394–418

    Article  CAS  PubMed  Google Scholar 

  28. Gurbuz S, Idris M, Tuncel D (2015) Org Biomol Chem 13:330–347

    Article  CAS  PubMed  Google Scholar 

  29. Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J (2007) Chem Soc Rev 36:267–279

    Article  CAS  PubMed  Google Scholar 

  30. Hayden F, Treanor JJ, Fritz RS, Lobo M, Betts RF, Miller M, Kinnersley N, Mills RG, Ward P, Straus SE (1999) JAMA 282:1240–1246

    Article  CAS  PubMed  Google Scholar 

  31. Lindemann L, Jacobsen H, Schuhbauer D, Knoflach F, Gatti S, Wettstein JG, Loetscher H, Chu T, Ebeling M, Paulson JC, Prinssen E, Brockhaus M (2010) Eur J Pharmacol 628:6–10

    Article  CAS  PubMed  Google Scholar 

  32. Bartels P, von Tumpling W (2008) Sci Total Environ 405:215–225

    Article  CAS  PubMed  Google Scholar 

  33. Accinelli C, Caracciolo AB, Grenni P (2007) Int J Environ Anal Chem 87:579–587

    Article  CAS  Google Scholar 

  34. Sacca ML, Accinelli C, Fick J, Lindberg R, Olsen B (2009) Chemosphere 75:28–33

    Article  CAS  PubMed  Google Scholar 

  35. Pinjari RV, Khedkar JK, Gejji SP (2010) J Incl Phenom Macrocycl Chem 66:371–380

    Article  CAS  Google Scholar 

  36. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  37. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji , Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JrJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09, Revision A.02, Gaussian Inc, Wallingford CT

  40. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  41. Cossi M, Barone V (1998) J Chem Phys 109:6246–6254

    Article  CAS  Google Scholar 

  42. Flükiger P, Lüthi HP, Portmann S (2000) MOLEKEL 4.3, Swiss center for scientific computing, Manno, Switzerland

  43. Pichierri F (2006) J Mol Struct (Theochem) 765:151–152

    Article  CAS  Google Scholar 

  44. Ochterski JW (2000) Thermochemistry in Gaussian, Gaussian Inc., Pittsburgh, PA

  45. Safia H, Fatiha M, Belgacem B, Leila N (2020) J Mol Struct 1217:128390

  46. Parr RG, Donelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  47. Janak JF (1978) Phys Rev B 18:7165–7168

    Article  CAS  Google Scholar 

Download references

Funding

This research project was financially supported by Mahasarakham University 2021, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

W. Rakrai and B. Wanno contributed to the study conception and design. The DFT calculations were performed by W. Rakrai, C. Tabtimsai, and B. Wanno. The data analysis and the first draft of the manuscript were made by W. Rakrai and B. Wanno. Revising the manuscript critically for important intellectual content on subsequent versions of the manuscript has been done by W. Rakrai, C. Kaewtong, and B. Wanno. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Banchob Wanno.

Ethics declarations

Ethics approval

The ethical standards have been met.

Consent for publication

All co-authors have seen and approved the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakrai, W., Tabtimsai, C., Kaewtong, C. et al. Theoretical investigation of the complexation, structural, and electronic properties of complexes between oseltamivir drug and cucurbit[n = 6–9]urils. Struct Chem 33, 757–768 (2022). https://doi.org/10.1007/s11224-022-01888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01888-1

Keywords

Navigation