Skip to main content
Log in

On using DFT to construct an IR spectrum database for PFAS molecules

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

PFAS molecules are chain-linked carbon/fluorine atoms, widely distributed in the environment, and dangerously toxic biologically. Here is constructed, using density functional theory (DFT), a prototype database of IR spectra for detection of PFAS molecules. Extraction of spectrum features for target molecules from measured spectra can be achieved by comparison to template spectra within a spectrum database, which are sufficient approximations of target spectra. The concept of extracting spectral features is distinct from that of inverting reflectance or transmission spectra for determination of dielectric response functions. This study continues presentation of the concept of using DFT to calculate template spectra for practical detection of target substances, by comparison with spectra within databases. Specifically, the focus here is upon PFAS molecules, which include toxic and carcinogenic environmental contaminants, and whose detection based on IR spectroscopy is thus of great importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Toxicological profile for perfluoroalkyls: final toxicological profile. U.S. Department of Health and Human Sciences: Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf. Accessed 2021 Jun 22

  2. Schultz MM, Barofsky DF, Field JA (2003) Fluorinated alkyl surfactants. Environ Eng Sci 20(5):487–501

    Article  CAS  Google Scholar 

  3. Reviewing New Chemicals under the Toxic Substances Control Act (TSCA) https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/actions-under-tsca-section-5. Accessed 2021 Jun 22.

  4. U.S. EPA. https://comptox.epa.gov/dashboard/chemical_lists/?search=PFAS. Accessed 2021 Jun 22.

  5. Hogue C, Bettenhausen C (2021) A tale of PFAS, pollution, and patent claims. Chem Eng News 99:(11)

  6. U.S. Secretary of Commerce on behalf of the U.S.A., IR Spectrum from NIST Standard Reference Database 69: NIST Chemistry Webbook (2017)

  7. Haaland DM (1990) Multivariate calibration methods applied to quantitative FT-IR analyses. Chapter 8, Practical Fourier Transform Infrared Spectroscopy, Editors: Ferraro J.R. and Krishnan K., Academic Press, Inc., San Diego, CA

  8. Lam RB (1983) On the relationship of least squares to cross-correlation quantitative spectral analysis. Appl Spectros 37:567–569

    Article  CAS  Google Scholar 

  9. Brown SD (1986) The Kalman filter in analytical chemistry. Anal Chem Acta 181:1–26

    Article  CAS  Google Scholar 

  10. Cooper WS (1986) Use of optimal estimation theory-in particular the Kalman filter-in data analysis and signal processing. Rev Sci Instrum 57(11):2862–2869

    Article  CAS  Google Scholar 

  11. Mann CK, Goleniewski JR, Sismanidis CA (1982) Spectrophotometric analysis by cross-correlation. Appl Spectros 36:223–227

    Article  CAS  Google Scholar 

  12. Mann CK, Vickers TJ (1986) Signal enhancement by data domain averaging. Appl Spectros 40(4):525–531

  13. Harrick NJ (1967) Internal reflection spectroscopy. Interscience Publishers, New York

    Google Scholar 

  14. Griffiths PR, Christopher CC (2002) Handbook of Vibrational Spectroscopy. John Wiley & Sons, New York

    Google Scholar 

  15. Huang L, Lambrakos SG, Shabaev A, Bernstein N, Massa L (2015) Molecular analysis of water clusters: calculation of the cluster structures and vibrational spectrum using density functional theory. C R Chim 18(5):516–524

  16. Lee M, Lambrakos S, Yapijakis C, Huang L, Ramsey S, Shabaev A, Massa L, Peak J (2014) Issues concerning spectral analysis of public water resources. J Water Sci Technol IWA Publishing 69(11):2364–2371

    Article  CAS  Google Scholar 

  17. Huang L, Lambrakos SG, Massa L (2019) IR absorption spectra for chlorinated ethanes in water using density functional theory. Multiscale Multidiscip Model Exp Des 2(3):175–183

  18. Wallace S, Lambrakos SG, Massa L (2019) Density function theory (DFT) calculated infrared absorption spectra forn. Water Sci Technol 80(10):1967–1974

    Article  CAS  Google Scholar 

  19. Wallace S, Lambrakos SG, Shabaev A, Massa L (2021) Calculated IR absorption spectra for perfluoroalkyl and polyfluoroalkyl (PFAS) molecules. Struct Chem. https://doi.org/10.1007/s11224-021-01738-6

    Article  Google Scholar 

  20. Lambrakos SG, Shabaev A, Wallace S, Massa L (2020) IR absorption spectra for PFAS molecules calculated using density functional theory,. Naval Research Laboratory Memorandum Report, Naval Research Laboratory, Washington, DC, NRL/MR/6394--19–10.116

  21. Espana VA, Mallavarapu M, Naidu R (2015) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): a critical review with an emphasis on field testing. Environ Technol Innov 4:168–181

  22. Backe WJ, Day TC, Field JA (2013) Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from U.S. military bases by nonaqueous large-volume injection HPLC-MS/MS. Environ Sci Technol 47:5226–5234

  23. Buck RC, Franklin J, Berger U, Conder JM, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7(4):513–541

  24. Houtz EF, Sedlak DL (2012) Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. Environ Sci Technol 46(17):9342–9349

  25. Oliaei F, Krien D, Weber R, Watson A (2013) PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environ Sci Pollut Res 20(4):1977–1992

  26. Kupryianchyk D, Hale SE, Breedveld GD, Cornelissen G (2016) Treatment of sites contaminated with perfluorinated compounds using biochar amendment. Chemosphere 142:35–40

  27. Liu J, Avendano SM (2013) Microbial degradation of polyfluoroalkyl chemicals in the environment: a review. Environ Int 61:98–114

  28. Place BJ, Field JA (2012) Identification of novel fluorochemicals in aqueous film-forming foams (AFFF) used by the US military. Environ Sci Technol 46(13):7120–7127

  29. Post GB, Cohn PD, Cooper KR (2012) Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res 116:93–117

  30. Vecitis CD, Park H, Cheng J, Made BT (2009) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front Environ Sci Eng China 3(2):129–151

  31. Vierke L, Staude C, Biegel-Engler A, Drost W, Schult C (2012) Perfluorooctanoic acid (PFOA) - main concerns and regulatory developments in Europe from an environmental point of view. Environ Sci Eur 24(16)

  32. Smith SW (1997) The scientist and engineer’s guide to digital signal processing, chapter 3: “the sampling theorem”, and chapter 7: “properties of convolution, correlation”.California Technical Publishing, San Diego, CA

    Google Scholar 

  33. Dennington R, Keith T, Millam J (2019) GaussView. Semichem Inc., Shawnee Mission, KS

    Google Scholar 

  34. Gaussian 16, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian Inc. Wallingford CT

  35. Frisch A, Frisch MJ, Clemente FR, Trucks GW (2009) Gaussian 09 user’s reference. Gaussian Inc., p, 105–106. online: www.gaussian.com/g_tech/g_ur/g09help.htm. Accessed 22 Jun 2021

  36. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  37. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  38. Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689

    Article  CAS  Google Scholar 

  39. Martin RM (2004) Electronic structures basic theory and practical methods. Cambridge University Press, Cambridge p. 2

  40. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  41. Ochterski JW (1999) Vibrational analysis in Gaussian. help@gaussian.com

  42. Becke AD (1993) Density-functional thermochemistry. III. The Role of Exact Exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  43. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  44. McLean AD, Chandler GS (1980) Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  45. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis-sets for anion calculations, 3, the 3–21+G basis set for 1st-row elements, Li-F. J Comp Chem 4:294–301

    Article  CAS  Google Scholar 

  46. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank a reviewer for several insightful comments which have much improved the presentation of this paper.

Funding

Funding for this project was provided by the Office of Naval Research (ONR) through the Naval Research Laboratory’s Basic Research Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors, Sonjae Wallace, Samuel Lambrakos, Andrew Shabaev, and Lou Massa, contributed equally.

Corresponding author

Correspondence to Lou Massa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, S., Lambrakos, S.G., Shabaev, A. et al. On using DFT to construct an IR spectrum database for PFAS molecules. Struct Chem 33, 247–256 (2022). https://doi.org/10.1007/s11224-021-01844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01844-5

Keywords

Navigation