Skip to main content
Log in

Halogen…π interactions in the complexes of fluorenonophane with haloforms

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The study of two complexes of fluorenonophane with CHCl3 and CHBr3 molecules has revealed that they differ mainly by the halogen bonds between host and guest molecules. The experimental and theoretical quantum chemical study has shown that the strength of a halogen bond depends on the nature of a halogen atom as well as its orientation to the π-system. The more positive electrostatic potential was revealed at the bromine atom indicating the stronger halogen bond with its participation that was confirmed by the interaction energies calculated for corresponding dimers and the evaluation of the true energy of a halogen bond. The orientation of the chlorine atom at the carbon aromatic atom instead of the center of the benzene ring leads to the shortest Hal…C distance that points out the stronger interaction according to the geometrical characteristics. The EDA analysis of the fluorenonophane complexes with CHCl3 and CHBr3 and their analogs with one halogen atom replaced by the hydrogen atom allows us to presume that the nature of halogen bonding is rather dispersive than electrostatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Experimental X-ray diffraction data are available from the Cambridge Crystallographic Data Centre on request quoting the deposition numbers CCDC 647,971 for 3Cl and CCDC 2,098,245 for 3Br.

References

  1. Hobza P, Zahradnik R (1980) Weak intermolecular interactions in chemistry and biology. Elsevier, Amsterdam, New York

    Google Scholar 

  2. Dunitz JD (1996) Weak intermolecular interactions in solids and liquids. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Mol Cryst Liq Cryst 279:209–218

    Article  CAS  Google Scholar 

  3. Waller M, Grimme S (2015) Weak intermolecular interactions: a supermolecule approach. In: Leszczynski J. (eds) Handbook of Computational Chemistry, Springer, Dordrecht

  4. Maji R, Wheeler SE (2018) Chapter 10: weak intermolecular interactions. In: Tantillo DJ (eds) Applied Theoretical Organic Chemistry, World Scientific 289–319

  5. Metrangolo P, Resnati G (2015) Halogen bonding I. Springer, Springer, Impact on materials chemistry and life sciences

    Book  Google Scholar 

  6. Metrangolo P, Resnati G (2015) Halogen bonding II. Springer, Springer, Impact on materials chemistry and life sciences

    Book  Google Scholar 

  7. Mele A, Metrangolo P, Neukrich H, Pilati T, Resnati G (2005) A halogen-bonding-based heteroditopic receptor for alkali metal halides. J Am Chem Soc 127:14972–14973

    Article  CAS  PubMed  Google Scholar 

  8. Metrangolo P, Neukrich H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    Article  CAS  PubMed  Google Scholar 

  9. Ouvrard C, Le Questel JY, Berthelot M, Laurence C (2003) Halogen-bond geometry: a crystallographic database investigation of dihalogen complexes. Acta Cryst B59:512–526

    Article  CAS  Google Scholar 

  10. Shishkin OV, Khrustalev VN, Lindeman SV, Lyu U, Orlova GI, Gribanova TN (1998) Structure of 5-nitro-2-tosylaminobenzaldehyde di(morpholin-4-yl)-aminal complex with carbon tetrachloride. Z Kristallogr 213:296–298

    Google Scholar 

  11. Glaser R, Chen N, Wu H, Knotts N, Kaupp M (2004) 13C NMR study of halogen bonding of haloarenes: measurements of solvent effects and theoretical analysis. J Am Chem Soc 126:4412–4419

    Article  CAS  PubMed  Google Scholar 

  12. Legon AC (1999) Angular and radial geometries, charge transfer and binding strength in isolated complexes B…ICl: some generalisations. Chem Phys Lett 314:472–480

    Article  CAS  Google Scholar 

  13. Legon AC (1999) Prereactive complexes of dihalogens XY with Lewis bases B in the gas phase: a systematic case for the halogen analogue B…XY of the hydrogen bond B…HX. Angew Chem, Int Ed 38:2686–2714

    Article  CAS  Google Scholar 

  14. Gildaay LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD (2015) Halogen bonding in supramolecular chemistry. Chem Rev 115:7118–7195

    Article  Google Scholar 

  15. Aackeröy CB, Hurley DP, Desper J (2012) Modulating supramolecular reactivity using covalent “switches” on a pyrazole platform. Cryst Growth Des 12:5806–5814

    Article  Google Scholar 

  16. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Riley KE, Hobza P (2011) Strength and character of halogen bonds in protein-ligand complexes. Cryst Growth Des 11:4272–4278

    Article  CAS  Google Scholar 

  18. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon-protein complexes: a structural survey. Chem Soc Rev 40:2267–2278

    Article  CAS  PubMed  Google Scholar 

  19. Scholfield MR, Van der Zanden CM, Carter M, Ho PS (2013) Halogen bonding (X-Bonding): a biological perspective. Protein Sci 22:139–152

    Article  CAS  PubMed  Google Scholar 

  20. Lu Y, Wang Y, Zhu W (2010) Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys 12:4543–4551

    Article  CAS  PubMed  Google Scholar 

  21. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56:1363–1388

    Article  CAS  PubMed  Google Scholar 

  22. Ho PS (2017) Halogen bonding in medicinal chemistry: from observation to prediction. Future Sci 9:637–640

    CAS  Google Scholar 

  23. Aackeröy CB, Wijethunga TK, Desper J, Đaković M (2015) Crystal engineering with iodoethynylmitrobenzenes: a group of highly effective halogen bond donors. Cryst Growth Des 15:3853–3861

    Article  Google Scholar 

  24. Mukherjee A, Tothadi S, Desiraju GR (2014) Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc Chem Res 47:2514–2524

    Article  CAS  PubMed  Google Scholar 

  25. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem 85:1711–1713

    Article  CAS  Google Scholar 

  26. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  PubMed  Google Scholar 

  27. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  PubMed  Google Scholar 

  28. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: σ-hole bonding. Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  29. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  PubMed  Google Scholar 

  30. Politzer P, Murray JS, Lane P (2007) σ-Hole bonding and hydrogen bonding: competitive interactions. Int J of Quant Chem 107:3046–3052

    Article  CAS  Google Scholar 

  31. Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput 4:232–242

    Article  CAS  PubMed  Google Scholar 

  32. Koláˇr MH, Hobza P (2016) Computer modeling of halogen bonding and other σ-hole interactions. Chem Rev 116:5155–5187

    Article  Google Scholar 

  33. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  34. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  35. Shishkin OV, Zubatyuk RI, Shishkina SV, Dyakonenko VV, Medviediev VV (2014) Role of supramolecular synthons in the formation of the supramolecular architecture of molecular crystals revisited from an energetic viewpoint. Phys Chem Chem Phys 16:6773–6786

    Article  CAS  PubMed  Google Scholar 

  36. Yufit DS, Zubatyuk R, Shishkin OV, Howard JAK (2012) Low-melting molecular complexes. Halogen bonds in molecular complexes of bromoform. Cryst Eng Comm 14:8222–8227

    Article  CAS  Google Scholar 

  37. Yufit DS, Shishkin OV, Zubatyuk RI, Howard JAK (2014) Low-melting molecular complexes. Z. Kristallogr 229:639–647

    CAS  Google Scholar 

  38. Yufit DS, Shishkin OV, Zubatyuk RI, Howard JAK (2014) Trimethyltrioxane (paraldehyde) and its halomethanes complexes: crystallization, structures, and analysis of packing motifs. Cryst Growth Des 14:4303–4309

    Article  CAS  Google Scholar 

  39. Steed JW, Atwood JL (2009) Supramolecular chemistry. Wiley, Chichester

    Book  Google Scholar 

  40. Lyapunov AYu, Kirichenko TI, Kulygina C, Zubatyuk R, Fonari M, Kyrychenko A, Doroshenko A (2015) New fluorenonocrownophanes containing azobenzene: synthesis, properties and interaction with paraquat. J Incl Phenom Macrocycl Chem 81:499–508

    Article  CAS  Google Scholar 

  41. Kikot LS, Kulygina CYu, Lyapunov AYu, Shishkina SV, Zubatyuk RI, Bogaschenko TYu, Kirichenko TI (2017) Complexation of molecular clips containing fragments of diphenylglycoluril and benzocrown ethers with paraquat and its derivatives. Beilstein J Org Chem 13:2056–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simonov YA, Bogdashchenko TY, Pastushok VN, Botoshanskii MM, Fonar’ MS, Lyapunov AY, Lukyanenko NG (2006) 2,6,8,12-Tetraoxa-4,10(1,4)-dibenzena-1,7(2,7)-difluorenacyclododecaphane-19,79-dione—a new macrocyclic receptor for polar organic molecules. Russ J Org Chem 42:1075–1082

    Article  CAS  Google Scholar 

  43. Haenel MW, Irngartinger H, Krieger C (1985) Transanulare wechselwirkung bei [m. n]phanen, 27. modelle für excimere und exciplexe: [2.2]phane des fluorens, 9-fluorenons und 9-fluorenyl-anions. Chem Ber 118:144–162

    Article  CAS  Google Scholar 

  44. Sheldrick GM (2015) SHELXT – integrated space-group and crystal-structure determination. Acta Cryst A71:3–8

    Google Scholar 

  45. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8

    Google Scholar 

  46. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  47. Konovalova IS, Shishkina SV, Paponov BV, Shishkin OV (2010) Analysis of the crystal structure of two polymorphic modifications of 3,4-diamino-1,2,4-triazole based on the energy of the intermolecular interactions. CrystEngComm 12:909–916

    Article  CAS  Google Scholar 

  48. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  49. Coppens P (1972) The use of a polarized hydrogen atom in X-ray structure refinement. Acta Crystallogr, Sect B: Struct Crystallogr Cryst Chem 28:1638–1640

    Article  CAS  Google Scholar 

  50. Allen FH, Bruno IJ (2010) Bond lengths in organic and metalorganic compounds revisited: X-H bond lengths from neutron diffraction data. Acta Crystallogr, Sect B: Struct Sci 66:380–386

    Article  CAS  Google Scholar 

  51. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  52. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  53. Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  54. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C 02. Gaussian Inc, Wallingford CT

    Google Scholar 

  56. Shishkin OV, Dyakonenko VV, Maleev AV (2012) Supramolecular architecture of crystals of fused hydrocarbons based on topology of intermolecular interactions. Cryst Eng Comm 14:1795–1804

    Article  CAS  Google Scholar 

  57. Shishkin OV (2008) Evaluation of true energy of halogen bonding in the crystals of halogen derivatives of trityl alcohol. Chem Phys Lett 458:96–100

    Article  CAS  Google Scholar 

  58. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  59. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102–1–14115

    Article  Google Scholar 

  60. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  61. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  Google Scholar 

  62. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20 basis set for correlated wave-functions. J Chem Phys 72:650–654

  63. Lebedev VI, Laikov DN (1999) A quadrature formula for the sphere of the 131st algebraic order of accuracy. Dokl Mat 59:477–481

    Google Scholar 

  64. Pulay P (1980) Convergence acceleration of iterative sequences. the case of SCF iteration. Chem Phys Lett 73:393–398

    Article  CAS  Google Scholar 

  65. Pulay P (1982) Improved SCF convergence acceleration. J Comput Chem 3:556–560

    Article  CAS  Google Scholar 

  66. Zefirov YuV, Zorky PM (1989) Van der Waals radii and their application in chemistry. Russ Chem Rev 58:421–441

    Article  Google Scholar 

  67. Sinnokrot MO, Sherrill CD (2004) Highly accurate coupled cluster potential energy curves for the benzene dimer: sandwich, t-shaped, and parallel-displaced configurations. J Phys Chem 108:10200–10207

    Article  CAS  Google Scholar 

  68. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis Cryst Eng Comm 11:19–32

    Article  CAS  Google Scholar 

  69. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17. University of Western Australia

Download references

Funding

The authors were financially supported by the National Academy of Sciences of Ukraine in the frame of the projects “New supramolecular systems based on cyclophanes with fluorenone and benzimidazole fragments. Design, synthesis, structure, perspectives” (0120U100122) and “Functional materials for biomedical purposes based on halogen-containing organic compounds” (0120U102660).

Author information

Authors and Affiliations

Authors

Contributions

S. Shishkina analyzed the results and wrote the manuscript, V. Dyakonenko performed the study of electron density distribution and decomposition of the interaction energy analysis, O. Shishkin performed the X-ray diffraction study and wrote the analysis of molecular structure, V. Seminozhenko discussed the idea and its realization, T. Bogashchenko synthesized the studied compounds, A. Lyapunov performed the spectral study of complexes, and T. Kirichenko discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Svitlana V. Shishkina.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6841 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkina, S.V., Dyakonenko, V.V., Shishkin, O.V. et al. Halogen…π interactions in the complexes of fluorenonophane with haloforms. Struct Chem 33, 257–266 (2022). https://doi.org/10.1007/s11224-021-01839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01839-2

Keywords

Navigation