Skip to main content
Log in

Role of pH in the stability of cytosine-cytosine mismatch and canonical AT and GC base pairs mediated with silver ion: a DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Metallo-nucleic acids have been investigated for their applications in the field of nanodevices and genetic expansion. The cytosine-Ag+-cytosine mismatch base pair interactions and their stability in nucleic acids have attracted the attention of chemists. We report a systematic study of canonical, mismatch, Ag+ mediated system with CC, AT, and GC base pairs computationally. The stability of such mismatch base pairs is dependent on the pH range ~ 5 to 9 and the duplexes beyond this range are unstable. The DFT calculations performed with the model DNA duplexes comprising of such mismatch pairs reveal the stability trend while varying the pH conditions. The stability of canonical Watson–Crick ATGC base pairs was compared with the CCAT and CCGC mismatch base pairs and the calculated results at B3LYP-D3/6-31G(d) level of theory in the aqueous phase suggest that the base stacking and hydrogen bonding are well maintained in the former case, however, the larger perturbations in the geometry are observed with the mispair and relatively unstable. The calculated binding energy B3LYP-D3/6-31G(d) level of theory of ATGC is energetically more stable (~ 20 kcal/mol) than the mismatch base pairs. The Ag+ mediated mismatch base pairs i.e., C_CAT and C_CGC examined at the same level of theory suggest that the CC mismatch base pairs complexed with proper alignment to the Ag+ ion and the AT and GC bases maintained the hydrogen bonding interactions. The relative binding energies have been calculated with 6–311 + G(d,p) basis set using B3LYP-D3 and wb97xd DFT functionals in the study. The mismatched base pair duplex systems i.e., C_CAT and C_CGC are structurally similar to the canonical Watson–Crick base pairs and energetically stable by ~ 40 and ~ 50 kcal/mol compared to the canonical ATGC base pairs. The experimental report on the thermal transition profile in 5’-(A)10C(A)10–3’ and 5’ (T)10C(T)10–3’ duplexes showed remarkable stability and corroborate the calculated results (Ono et al. in Chem Commun 4825−4827, 2008). The stability of Ag+ mediated mismatch bases at the higher pH 9 was also examined and the nucleobases such as guanine and thymine would be deprotonated under this condition. The calculated results suggest that the CCA_T and CCG_C duplexes are largely distorted with the complexation of Ag+ with the AT and GC base pairs and would in turn denature the duplex. The AIM analysis performed at B3LYP-D3/6-31G(d) level of theory for all the studied Ag+ mediated complexes reveals that the Ag+ interaction with the corresponding nucleobases was electrostatic in nature. The role of pH in governing the stability of C–Ag+-C complex formation in mismatch base nucleic acids is crucial for their application of genetic expansion and nucleic acid-based nanodevices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ono A, Cao S, Togashi H et al (2008) Specific interactions between silver(i) ions and cytosine-cytosine pairs in DNA duplexes. Chem Commun 4825–4827. https://doi.org/10.1039/b808686a

  2. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chemie - Int Ed 43:4300–4302. https://doi.org/10.1002/anie.200454172

    Article  CAS  Google Scholar 

  3. Torigoe H, Ono A, Kozasa T (2010) HgII ion specifically binds with T: T mismatched base pair in duplex DNA. Chem - A Eur J 16:13218–13225. https://doi.org/10.1002/chem.201001171

    Article  CAS  Google Scholar 

  4. Ono A, Torigoe H, Tanaka Y, Okamoto I (2011) Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chem Soc Rev 40:5855–5866. https://doi.org/10.1039/c1cs15149e

    Article  CAS  PubMed  Google Scholar 

  5. Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chemie - Int Ed 50:3124–3156. https://doi.org/10.1002/anie.200907223

    Article  CAS  Google Scholar 

  6. Takezawa Y, Shionoya M (2012) Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs. Acc Chem Res 45:2066–2076. https://doi.org/10.1021/ar200313h

    Article  CAS  PubMed  Google Scholar 

  7. Torigoe H, Okamoto I, Dairaku T et al (2012) Thermodynamic and structural properties of the specific binding between Ag+ ion and C: C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair. Biochimie 94:2431–2440. https://doi.org/10.1016/j.biochi.2012.06.024

    Article  CAS  PubMed  Google Scholar 

  8. Torigoe H, Miyakawa Y, Ono A, Kozasa T (2011) Thermodynamic properties of the specific binding between Ag+ ions and C: C mismatched base pairs in duplex DNA. Nucleosides, Nucleotides Nucleic Acids 30:149–167. https://doi.org/10.1080/15257770.2011.553210

    Article  CAS  PubMed  Google Scholar 

  9. Urata H, Yamaguchi E, Nakamura Y, Wada S (2011) Pyrimidine-pyrimidine base pairs stabilized by silver(i) ions. Chem Commun 47:941–943. https://doi.org/10.1039/c0cc04091f

    Article  CAS  Google Scholar 

  10. Funai T, Miyazaki Y, Aotani M et al (2012) Ag I ion mediated formation of a C-A mispair by DNA polymerases. Angew Chemie - Int Ed 51:6464–6466. https://doi.org/10.1002/anie.201109191

    Article  CAS  Google Scholar 

  11. Kondo J, Sugawara T, Saneyoshi H, Ono A (2017) Crystal structure of a DNA duplex containing four Ag(i) ions in consecutive dinuclear Ag(i)-mediated base pairs: 4-thiothymine-2Ag(i)-4-thiothymine. Chem Commun 53:11747–11750. https://doi.org/10.1039/c7cc06153f

    Article  CAS  Google Scholar 

  12. Mei H, Yang H, Röhl I, Seela F (2014) Silver arrays inside DNA duplexes constructed from silver(I)-mediated pyrrolo-dc-pyrrolo-dc base pairs. ChemPlusChem 79:914–918. https://doi.org/10.1002/cplu.201402060

    Article  CAS  Google Scholar 

  13. Yang H, Mei H, Seela F (2015) Pyrrolo-dC metal-mediated base pairs in the reverse Watson-Crick double helix: enhanced stability of parallel DNA and impact of 6-pyridinyl residues on fluorescence and silver-ion binding. Chem - A Eur J 21:10207–10219. https://doi.org/10.1002/chem.201500582

    Article  CAS  Google Scholar 

  14. Kondo J, Tada Y, Dairaku T et al (2015) High-resolution crystal structure of a silver(I)-RNA hybrid duplex containing Watson-Crick-like C-silver(I)-C metallo-base pairs. Angew Chemie - Int Ed 54:13323–13326. https://doi.org/10.1002/anie.201507894

    Article  CAS  Google Scholar 

  15. Dairaku T, Furuita K, Sato H et al (2016) Structure determination of an AgI-mediated cytosine–cytosine base pair within DNA duplex in solution with1H/15N/109Ag NMR spectroscopy. Chem - A Eur J 22:13028–13031. https://doi.org/10.1002/chem.201603048

    Article  CAS  Google Scholar 

  16. Chen X, Karpenko A, Lopez-Acevedo O (2017) Silver-mediated double helix: structural parameters for a robust DNA building block. ACS Omega 2:7343–7348. https://doi.org/10.1021/acsomega.7b01089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fortino M, Marino T, Russo N (2015) Theoretical study of silver-ion-mediated base pairs: the case of C-Ag-C and C-Ag-A systems. J Phys Chem A 119:5153–5157. https://doi.org/10.1021/jp5096739

    Article  CAS  PubMed  Google Scholar 

  18. Swasey SM, Leal LE, Lopez-Acevedo O et al (2015) Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints. Sci Rep 5:10163. https://doi.org/10.1038/srep10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  20. Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–947. https://doi.org/10.1021/ja00523a008

    Article  CAS  Google Scholar 

  21. Kawahara SI, Uchimaru T (2000) Basis set effect on hydrogen bond stabilization energy estimation of the Watson-Crick type nucleic acid base pairs using medium-size basis sets: Single point MP2 evaluations at the HF optimized structures. Phys Chem Chem Phys 2:2869–2872. https://doi.org/10.1039/b001507p

    Article  CAS  Google Scholar 

  22. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  23. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/b810189b

    Article  CAS  PubMed  Google Scholar 

  24. Marek PH, Szatylowicz H, Krygowski TM (2019) Stacking of nucleic acid bases: optimization of the computational approach—the case of adenine dimers. Struct Chem 30:351–359. https://doi.org/10.1007/s11224-018-1253-7

    Article  CAS  Google Scholar 

  25. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1:153–163. https://doi.org/10.1002/wcms.19

    Article  CAS  Google Scholar 

  26. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  27. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Had M (2009) Gaussian 09 (revision B1). Gaussian Inc, Wallingford

    Google Scholar 

  29. Drew HR, Wing RM, Takano T et al (1981) Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci U S A 78:2179–2183. https://doi.org/10.1073/pnas.78.4.2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee JS, Woodsworth ML, Latimer LJP, Morgan AR (1984) Poly(pyrimidine) poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucleic Acids Res 12:6603–6614. https://doi.org/10.1093/nar/12.16.6603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verdolino V, Cammi R, Munk BH, Schlegel HB (2008) Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. J Phys Chem B 112:16860–16873. https://doi.org/10.1021/jp8068877

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Luan BQ, Yang Z et al (2014) Single molecule investigation of Ag+ interactions with single cytosine-, methylcytosine- and hydroxymethylcytosine-cytosine mismatches in a nanopore. Sci Rep 4:5883. https://doi.org/10.1038/srep05883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zacharias M (2020) Base-pairing and base-stacking contributions to double-stranded DNA formation. J Phys Chem B 124:10345–10352. https://doi.org/10.1021/acs.jpcb.0c07670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.B is thankful to the Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India, for his Ph.D. registration. S.B acknowledges CSIR, New Delhi, India for CSIR-SRF fellowship. We thank the reviewers for their valuable comments and suggestions that have helped us to improve the paper. CSIR-CSMCRI 145/2021 registration number.

Funding

S.B. and B.G were financially supported by the Department of biotechnology (DBT), New Delhi (Grant no. BT/PR12730/BID/7/523/2015), and Department of Science & Technology (DST).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Bishwajit Ganguly.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2314 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhai, S., Ganguly, B. Role of pH in the stability of cytosine-cytosine mismatch and canonical AT and GC base pairs mediated with silver ion: a DFT study. Struct Chem 33, 35–47 (2022). https://doi.org/10.1007/s11224-021-01814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01814-x

Keywords

Navigation