Skip to main content
Log in

Protonated MF (M=Au, Ir, Os, Re, Ta, W) behave as superacids and are building blocks of new class of salt

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Novel strong superacids HMF6 (M=Au, Ir, Os, Re, Ta, W) are proposed and are investigated with the help of DFT/B3LYP method and SDD basis set for 5d transition metals as well as 6-311++G (d) basis set for H and F atoms. These HMF6 superacids are composed with Brønsted/Lewis (MF5/HF). The stabilities of HMF6 are discussed with the help of structure, dissociation energy through HF channel, and normal mode analysis. The ΔEdisso>0 shows that all HMF6 superacids are energetically stable through HF dissociation channel. The gas phase acidity of HMF6 has been calculated by the Gibbs free deprotonation energy. All species of HMF6 belong to superacids having smaller deprotonation energy; 100% concentrated H2SO4 acids however predicted ΔGdep of HAuF6, is nearly equal to ΔGdep of HSbF6. The strength of acidity of HMF6 is closely related to vertical detachment energy (VDE) of their corresponding superhalogen anions \( \kern0.5em {\mathrm{MF}}_6^{-} \). This study provide appropriate path to design new class of superacids which is more acidic than HSbF6. We have also modelled and discussed supersalt by the interaction of Li with MF6 superhalogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data and materials are real. First time any study is done on these aforesaid materials.

References

  1. Nishikawa K, Nojima H (2001) Japan J. Appl. Phys. 40:835–837

    Google Scholar 

  2. Miller NJ (1984). J. Ment. Health Adm 11:36–37

    Article  CAS  PubMed  Google Scholar 

  3. Giri S, Bahera S, Jena P (2014) Angew Chem. Int. Ed 53:13916–13919

    Article  CAS  Google Scholar 

  4. Srivastava AK, Misra N (2016). Polyhedron 117:422–426

    Article  CAS  Google Scholar 

  5. Srivastava AK, Misra N (2016) Electrochem. Commun 68:99–103

    CAS  Google Scholar 

  6. Koppel IA, Burk P, Leito I, Sonoda T, Mishima M (2000). J. Am. Chem. Soc. 122:5114–5124

    Article  CAS  Google Scholar 

  7. Hall NF, Conant JB (1927). J. Am. Chem. Soc. 49:3047–3061

    Article  CAS  Google Scholar 

  8. Hogeveen H, Bickel AF (1969) Recl. Trav. Chim. Pays-Bas 88:371–378

    Article  CAS  Google Scholar 

  9. Hogeveen H, Bickel AF (1967) J. Chem. Soc. Chem. Commun. 13:635–636

    Google Scholar 

  10. Gillespie RJ, Peel TE (1971) Adv. Phys. Org. Chem. 9:1–24

    Article  CAS  Google Scholar 

  11. Gillespie RJ, Peel TE (1973) J. Am. Chem. Soc. 95:5173–5178

    Article  CAS  Google Scholar 

  12. Olah GA, Schlosberg RH (1968) J. Am. Chem. Soc. 90:2726–2727

    Article  CAS  Google Scholar 

  13. Bickel AF, Gaasbeek CJ, Hogeveen H, Oelderik JM, Platteeuw JC (1967) Chem Commun 634–635

  14. Olah GA, Lukas J (1967). J. Am. Chem. Soc. 89:2227–2228

    Article  CAS  Google Scholar 

  15. Olah GA, Prakash GK, Sommer J (1979) Superacids. Science 206:13–20

    Article  CAS  PubMed  Google Scholar 

  16. Czapla M, Skurski P (2015). Chem. Phys. Lett. 630:1–5

    Article  CAS  Google Scholar 

  17. Czapla M, Skurski P (2015). J. Phys. Chem. A 119:12868–12875

    Article  CAS  PubMed  Google Scholar 

  18. Srivastava AK, Misra N (2015). Polyhedron 3:277–283

    Google Scholar 

  19. Shukla DV, Srivastava AK, Misra N (2017). Main group chemistry 16(2):141–150

    Article  CAS  Google Scholar 

  20. Czapla M, Skurski P, Anusiewicz I (2016). RSC Adv. 6:29314–29325

    Article  CAS  Google Scholar 

  21. Srivastava A K, Misra N Kumar A (2017) New J Chem 41:5445–5449

  22. Frisch, MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision E.01,  Gaussian, Inc., Wallingford CT, 2009

  23. Topol IA, Tawa GJ, Burt SK, Rashin AA (1997). J. Phys. Chem. A 101:10075–10081

    Article  CAS  Google Scholar 

  24. Dennington R, Keith T, Millam J (2009) GaussView Version 5, Semichem Inc. Shawnee Mission KS

  25. Macgregor SA, Moock KH (1998). Inorg. Chem. 37:3284

    Article  CAS  Google Scholar 

  26. Graudejus O, Wilkinson A P, Chacon L C, Bartlett N (2000) Inorg Chem 39(13):2794–2800

  27. Hoskins BF, Linden A, Mulvaney PC, O’Donnell TA (1984). Inorg.Chim. Acta 88:217

    Article  CAS  Google Scholar 

  28. Fitz H, Muller BG, Graudejus O, Bartlett NZ (2002). Z. Anorg. Allg. Chem. 628:133

    Article  CAS  Google Scholar 

  29. Graudejus O, Muller BGZ (1996). Z. Anorg. Allg. Chem. 622:1076

    Article  CAS  Google Scholar 

  30. George PM, Beauchamp JL (1979). Chem. Phys. 36:345

    Article  CAS  Google Scholar 

  31. Viggiano AA, Paulson JF, Dale F, Henchman M, Adams NG, Smith DJ (1985). Phys. Chem. 89:2264

    Article  CAS  Google Scholar 

  32. Korobov MV, Kuznetsov SV, Sidorov LN, Shipachev VA, Mit’kin VN (1989). Int. J. Mass Spectrom. Ion Process. 87:13

    Article  CAS  Google Scholar 

  33. Friedman JF, Stevens AE, Miller TM, Viggiano AA (2006). J. Chem. Phys. 124:224306

    Article  PubMed  CAS  Google Scholar 

  34. Craciun R, Picone D, Long RT, Li S, Dixon DA (2010). Inorg. Chem. 49:1056–1070

    Article  CAS  PubMed  Google Scholar 

  35. Gutsev GL, Boldyrev AI (1983). Chem. Phys. Lett. 101:441

    Article  CAS  Google Scholar 

  36. Miyoshi E, Sakai Y, Murakami A, Iwaki H, Terashima H, Shoda T, Kawaguchi T (1988). J. Chem. Phys. 89:4193

    Article  CAS  Google Scholar 

  37. Miyoshi E, Sakai Y (1988). J. Chem. Phys. 89:7363

    Article  CAS  Google Scholar 

  38. Koirala P, Willis M, Kiran B, Kandalam AK, Jena P (2010). J. Phys. Chem. C 114:16018–16024

    Article  CAS  Google Scholar 

  39. Srivastava AK, Misra N, Pandey SK (2015). Chem. Phys. Lett. 624:15–18

    Article  CAS  Google Scholar 

  40. Siddiqui SA, Rasheed T (2012) Int J Quantum Chem 113(7):959–965

  41. Srivastava AK, Misra N (2014). J. Fluor. Chem. 158:65–68

    Article  CAS  Google Scholar 

  42. Srivastava AK, Misra N, Pandey AK (2015). J. Chem. Sci. 127:1853–1858

    Article  CAS  Google Scholar 

  43. Czapla M, Skurski P (2017). Int. J. Quantum Chem. 25:494

    Google Scholar 

  44. Koch U, Popelier P (1995). J. Phys. Chem. A 99:9747–9754

    Article  CAS  Google Scholar 

  45. O’boyle NM, Tenderholt AL, Langner KM (2008). J. Comput. Chem. 29:839–845

    Article  PubMed  CAS  Google Scholar 

  46. Keith T A, Gristmill T K Software overland park KS USA 2019.

    Google Scholar 

  47. Rasheed T, Siddiqui SA, Pandey AK, Bouarissa N, AliAl-Hajry (2017). J. Fluor. Chem. 195:85–92

    Article  CAS  Google Scholar 

  48. Rasheed T, Siddiqui SA, Pandey AK, Mishra M (2012). J. Fluor. Chem. 135:285–291

    Article  CAS  Google Scholar 

Download references

Code availability

Licenced codes are used.

Author information

Authors and Affiliations

Authors

Contributions

Anoop Kumar Pandey: Most calculations and writing.

D. V. Shukla: Modelling and writing.

Vijay Narayan: Literature survey and writing.

Vijay Singh: Methods and some calculations.

Apoorva Dwivedi: Whole paper final writing and submission process (corresponding author).

Corresponding author

Correspondence to Apoorva Dwivedi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Shukla, D.V., Narayan, V. et al. Protonated MF (M=Au, Ir, Os, Re, Ta, W) behave as superacids and are building blocks of new class of salt. Struct Chem 33, 91–100 (2022). https://doi.org/10.1007/s11224-021-01809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01809-8

Keywords

Navigation