Skip to main content
Log in

Investigation of superacidic behavior of hydrogenated FemFn (m = 1/2, n = 1–6/11) complexes and their abilities to form supersalts

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The superacidic properties of HFemFn (m = 1/2, n = 1–6/11) are calculated by using the Density functional theory with Becke, 3-parameter, Lee–Yang–Parr (DFT/B3LYP) method. To improve accuracy, the Los Alamos National Laboratory 2 double-ζ (LAN2DZ) basis set is employed for Fe and 6-31G (d) basis set for H and F atoms in the calculations. The gas phase acidity of HFemFn (m = 1/2, n = 1–6/11) has been calculated by using Gibbs free energies of their deprotonation reactions. The calculated correlation factor (R2 = 0.97452) shows that the acidity of protonated superhalogens HFemFn (m = 1/2, n = 1–6/11) is directly related to the stability of their respective anionic superhalogens. HFeF6 acid has comparable strength, while HFe2F11 acid is stronger than the most acidic species HSbF6. The current study establishes a novel approach for modeling new superacids that are more acidic than the strongest superacid, HSbF6. We have also designed various supersalts using a combination of superacids HFeF3 (odd n) HFeF4 (even n), and superbase OLi3OH. The calculated dissociation energies through the neutral and ionic channels of supersalts are compared with the respective dissociation energies of traditional salt LiF. In supersalts, the computed nonlinear optical properties (NLO) are affected by whether the number of fluorine atoms is even or odd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nishikawa K, Nojima H (2001) Jpn J Appl Phys 40:L835–L837

    CAS  Google Scholar 

  2. Miller NJ, Ment J (1984) Health Adm 11:36–37

    CAS  Google Scholar 

  3. Goel N, Etwaroo GR (2006) Psychol Med 36:1253–1263

    PubMed  Google Scholar 

  4. Rienstra-Kiracofe JC, Tschumper GS, Schaefer III HF, Nandi S, Ellison GB (2002) Chem. Rev. (Wasington.D.C) 102: 231–282

  5. Gutsev GL, Boldyrev AI (1984) Chem Phys Lett 108:250–254

    CAS  Google Scholar 

  6. Röper M, Gehrer E, Narbeshuber T, Siegel W (2000) “Acylation and Alkylation” in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  7. Stichert W, Scuth F, Kuba S, Knozinger H (2001) J Catal 198:277–285

    CAS  Google Scholar 

  8. Harmer MA, Junk C, Rostovtsev V, Carcani LG (2007) Vickery, Schnepp Z. Green Chem 9:30–37

    CAS  Google Scholar 

  9. Zhou FQ, Xu WH, Li JF et al (2017) Inorg Chem 56:11787–11797

    CAS  PubMed  Google Scholar 

  10. Pines H (1981) J Am Chem Soc 119:8576–8577

    Google Scholar 

  11. Hall NF, Conant JB (1927) J Am Chem Soc 49:3047–3061

    CAS  Google Scholar 

  12. Gillespie RJ, Peel TE (1971) Adv Phys Org Chem 9:1–24

    CAS  Google Scholar 

  13. Gillespie RJ, Peel TE (1973) J Am Chem Soc 95:5173–5178

    CAS  Google Scholar 

  14. Hogeveen H, Bickel AF (1969) Recl Trav Chim Pays-Bas 88:371–378

    CAS  Google Scholar 

  15. Hogeveen H, Bickel AF (1967) J Chem Soc, Chem Commun 13:635–636

    Google Scholar 

  16. Bickel AF, Gaasbeek CJ, Hogeveen H, Oelderik JM, Platteeuw JC (1967) J Chem Soc, Chem Commun 13:634–635

    Google Scholar 

  17. Olah GA, Lukas J (1967) J. Am. Chem. Soc. 89:2227–2228

  18. Olah GA, Prakash GK, Sommer J (1979) Science 206:13–20

  19. Koppel IA, Burk P, Koppel I, Leito I, Sonoda T, Mishima M (2000) J Am Chem Soc 122:5114–5124

    CAS  Google Scholar 

  20. Czapla M, Skurski P (2015) Chem Phys Lett 630:1–5

    CAS  Google Scholar 

  21. Czapla M, Skurski P (2015) J Phys Chem A 119:12868–12875

    CAS  PubMed  Google Scholar 

  22. Srivastava AK, Misra N (2015) Polyhedron 3:277–283

    Google Scholar 

  23. Zhong G, Chan B, Radom L (2009) Org Lett 11:749–751

    CAS  PubMed  Google Scholar 

  24. Gutowski KE, Dixon DA (2006) J Phys Chem A 110:12044–12054

    CAS  PubMed  Google Scholar 

  25. Axhausen J, Ritter C, Lux K, Kornath A (2013) Anorg Allg Chem 639:65–72

    CAS  Google Scholar 

  26. Axhausen J, Lux K, Kornath A (2014) Angew Chem Int Ed 53:3720–3721

    CAS  Google Scholar 

  27. Yang H, Li Y, Wu D, Li ZR (2012) Int J Quantum Chem 112:770–778

    CAS  Google Scholar 

  28. Srivastava AK, Misra N (2014) New J Chem 38:2890–2893

    CAS  Google Scholar 

  29. Srivastava AK, Misra N (2014) Mol Phys 112:2621–2626

    CAS  Google Scholar 

  30. Srivastava AK, Misra N (2014) RSC Adv 4:41260–41265

    CAS  Google Scholar 

  31. Becke BD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  32. Frisch MJ et al.(2003) Gaussian 03 Revision A. 1, Gaussian, Inc., Pittsburgh PA

  33. Dennington R, Keith T, Millam J (2005) GaussView Version 30. Semichem Inc, KS

    Google Scholar 

  34. Rasheed T, Siddiqui SA, Pandey AK, Bouarissae N, Hajry AA (2017) J Fluorine Chem 195:85–92

    CAS  Google Scholar 

  35. Topol IA, Tawa GJ, Burt SK, Rashin AA (1997) J Phys Chem A 101:10075–10081

    CAS  Google Scholar 

  36. Czapla M, Skurski P (2017) Int J Quantum Chem 118:25494–25498

    Google Scholar 

  37. Pandey AK, Shukla DV, Mishra VN, Singh V, Dwivedi A, Struct Chem 33:91–100

  38. Srivastava AK, Kumar A, Mishra N (2017) New Jour. Chem 41:5445–5449

    Google Scholar 

  39. Pandey AK, Shukla DV, Mishra VN, Dwivedi A (2021) Jour Ind chem Soc 98:100046

    Google Scholar 

  40. Rasheed T, Siddiqui SA, Kargeti A, Shukla DV, Singh V, Pandey AK (2021) Stru Chem 32:2209–2221

    CAS  Google Scholar 

  41. Srivastava AK, Misra N (2016) Chem Phys Lett 644:1–4

    CAS  Google Scholar 

  42. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2007) J Phys Chem A 111:1358–1361

    CAS  PubMed  Google Scholar 

  43. Yang H, Li Y, Wu D, Li ZR (2012) Inter Jour Quant Chem 112:770–778

    CAS  Google Scholar 

  44. Yang H, Li Y, Wu D, Li ZR (2008) Inorg Chem 47:9773–9778

    Google Scholar 

  45. Padrón JA, Carasco R, Pellón RF (2002) J Pharm Pharmaceut Sci 5:258–266

    Google Scholar 

  46. Verma RP, Hansch C (2005) Bioorg Med Chem 13:2355–2372

    CAS  PubMed  Google Scholar 

  47. Verma RP, Kurup A, Hansch C (2005) Bioorg Med Chem 13:237–255

    CAS  PubMed  Google Scholar 

  48. Vuks MF (1966) Opt Spectrosc 20:361–368

    Google Scholar 

  49. Kumar A, Srivastava A, Tiwari SN, Misra N, Sharma D (2019) Mol Cryst Liq Cryst 681:23–31

    CAS  Google Scholar 

Download references

Acknowledgements

VS is grateful and acknowledge the computer resources, technical expertise, and assistance provided by the Center for High-Performance Computing (MATS1467) Cape Town, South Africa.

Funding

Funding is provided by Uttar Pradesh government (India)[No:46/2021/603/sattar-4–2021-4(56)/2020] to the author Anoop Kumar Pandey.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by all the authors. The first draft of the manuscript was written by Anoop Kumar Pandey, Apoorva Dwivedi, and Vijay Singh and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vijay Singh.

Ethics declarations

Ethical approval

This article does not contain any studies involving animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Dwivedi, A., Shukla, D.V. et al. Investigation of superacidic behavior of hydrogenated FemFn (m = 1/2, n = 1–6/11) complexes and their abilities to form supersalts. Struct Chem 34, 1385–1393 (2023). https://doi.org/10.1007/s11224-022-02099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02099-4

Keywords

Navigation