Skip to main content
Log in

Models for boronic acid receptors: a computational structural, bonding, and thermochemical investigation of the HB(OH)2∙H2O∙NH3 and HB(-O-CH2-CH2-O-)∙NH3∙H2O potential energy surfaces

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Results of structural and thermochemical calculations involving boronic acid, HB(OH)2, and the corresponding ethylene glycol ester, HB(-O-CH2-CH2-O-), in the presence of explicit NH3 and/or H2O molecules are reported. Calculations were performed in a polarizable continuum model (PCM) water solution and in the gas phase using density functional theory (DFT) and second-order Moller-Plesset perturbation theory (MP2) with the Dunning-Woon aug-cc-pVTZ basis set. Different classes of local minima on the HB(OH)2·NH3·H2O and HB(-O-CH2-CH2-O-)·NH3·H2O potential energy surfaces (PESs) in PCM water solution have been identified: (1) structures with a N→B dative bond, [H3N→BH(OH)2]·H2O, and [H3N→B(H)(-O-CH2-CH2-O-)]·H2O, where the H2O is involved in hydrogen bonding; (2) water-inserted structures involving either a novel O→B dative bond, H3N·H(H)O→BH(OH)2, and H3N···H(H)O→B(H)(-O-CH2-CH2-O-) where the H2O molecule remains essentially intact or lower-energy zwitterionic arrangements in which a water H atom has been transferred to the ammonia, [H4N]+[HO-BH(OH)2], and [H4N]+[BH(OH)(-OCH2-CH2-O-)]; (3) structures where both the NH3 and H2O molecules are exclusively involved in hydrogen bonding. In these simple model systems, arrangements with N→B dative bonds, and some structures with only O···H and N···H hydrogen bonds, are ca. 5–6 kcal/mol lower in energy than either of the corresponding water-inserted structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jin S, Cheng Y, Reid S, Li M, Wang B (2010) Carbohydrate recognition by boronolectins, small molecules, and lectins. Med Res Rev 30:171–257

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang W, Gao S, Gao X, Karnati VV, Ni W, Wang B, Hooks WB, Carson J, Weston B (2002) Diboronic acids as fluorescent probes for cells expressing Sialyl Lewis X. Bioorg Med Chem Lett 12:2175–2177

    Article  CAS  Google Scholar 

  3. Murrey HE, Hsieh-Wilson LC (2008) Chemical neurobiology of carbohydrates. Chem Rev 108:1708–1731

    Article  CAS  Google Scholar 

  4. Sun X, Zhai W, Fossey JS, James TD (2016). Boronic acids for fluorescence imaging of carbohydrates. Chem Commun 52:3456–3469

    Article  CAS  Google Scholar 

  5. James TD, Sandanayake KRAS, Nakashima K, Shinkai S (1994) A glucose-selective molecular fluorencence sensor. Chem Commun 1621–1622

  6. James TD, Sandanayake KRAS, Shinkai S (1995) Chiral discrimination of monosaccharides usin a fluorescent molecular sensor. Nature 374:345–347

  7. Ni W, Kaur G, Springsteen G, Wang B, Franzen S (2004) Regulating the fluorescence intensity of an anthracene boronic acid system: a B-N bond or a hydrolysis mechanism? Bioorg Chem 32:571–581

    Article  CAS  Google Scholar 

  8. Chapin BM, Metola P, Vankayala SL, Woodcock HL, Mooibroek TJ, Lynch VM, Larkin JD, Anslyn EV (2017) Disaggregation is a mechanism for emission turn-on of ortho-aminomethylphenylboronic acid-based saccharide sensors. J Am Chem Soc 139:5568

    Article  CAS  Google Scholar 

  9. Sun X, James TD, Anslyn EV (2018) Arresting “loose bolt” internal conversion from −B(OH)2 groups is the mechanism for emission turn-on in ortho-aminomethylphenylboronic acid-based saccharide sensors. J Am Chem Soc 140:2348–2354

    Article  CAS  Google Scholar 

  10. Sun X, Chapin BM, Metola P, Collins B, Wang B, James TD, Anslyn EV (2019) The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids. Nat Chem 11:768–778

    Article  CAS  Google Scholar 

  11. Ernzerhof M, Perdew JP (1998) Generalized gradient approximation to the angle- and system-averaged exchange hole. J Chem Phys 108:3313–3320

    Article  Google Scholar 

  12. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  13. Perdew JP, Burke K, Ernzerhof M (1997) Errata: generalized gradient approximation made simple. Phys Rev Lett 1396

  14. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  15. Kendall RA, Dunning Jr TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  16. Peterson KA, Woon DE, Dunning Jr TH (1994) Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + H2→ H2 + H reaction. J Chem Phys 100:7410–7415

    Article  CAS  Google Scholar 

  17. Woon DE, Dunning Jr TH (1993) Gaussian basis sets for use in correlated molecular calculations. III The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR al., e. Gaussian 09 Revision D.01

  19. Tomasi J, Mennucci B, Cammi T (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094

    Article  CAS  Google Scholar 

  20. Grimme S, Antony J, Erlich S, Krieg H (2010) A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  21. Grimme S, Ehrlich S, Goerigk L (2011) Effect of damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  Google Scholar 

  22. Frisch MJ, Head-Gordon M, Pople JA (1990) A direct MP2 gradient method. Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  23. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Phys Lett 153:503–506

    CAS  Google Scholar 

  24. Moller C, Plesset MS (1934) Note on the approximation treatment for many-electron systems. Phys Rev 46:0618–0622

    Article  CAS  Google Scholar 

  25. Rao NZ, Larkin JD, Bock CW (2016) A comparison of the structure and bonding in the aliphatic boronic R-B(OH)2 and borinic R-BH(OH) acids (R=H, NH2, OH, and F): a computational investigation. Struct Chem 27:1081–1091

    Article  CAS  Google Scholar 

  26. Buhl M, Steinke T, Schleyer P v R, Boese R (1991) Solvation effects on geometry and chemical shifts. An ab initio study. Angew Chem Int Ed Eng 30:1160

  27. Hopfl H (1999) The tetrahedral character of the boron atom newly defined - a useful tool to evaluate the N-->B bond. J Organomet Chem 581:129–149

  28. Jiao H, Schleyer P (1994) Large effects of medium on geometries. An ab Initio Study. v. R. J Am Chem Soc 116:7429

  29. Larkin JD, Bock CW (2018) A comparison of the structure and bonding in the donor-acceptor complexes H3N→BR(OH)2 and H3N→BRH(OH) (R = H; NH2, OH, and F): a computational investigation. Struct Chem 30:361–368

    Article  Google Scholar 

  30. Larkin JD, Fossey JS, James TD, Brooks BR, Bock CW (2010) A comparison of the structure and bonding in the donor-acceptor complexes H3N→BR(OH)2 and H3N→BRH(OH) (R = H; NH2, OH, and F): a computational investigation. J Phys Chem A 114:12531

    Article  CAS  Google Scholar 

  31. Collins BE, Sorey S, Hargrove AE, Shabbir SH, Lynch VM, Anslyn EV (2009) Probing intramolecular B-N interactions in ortho-aminomethyl arylboronic acids. J Organomet Chem 11:4055–4060

    Article  Google Scholar 

  32. Zhu L, Shabbir SH, Gray M, Lynch VM, Sorey S, Anslyn EV (2006) A structural investigation of the N-B interaction in an o-(N,N-dialkylaminomethyl)arylboronate system. J Am Chem Soc 128:1222–1232

    Article  CAS  Google Scholar 

  33. Franzen S, Ni W, Wang B (2003) Study of the mechanism of electron-transfer quenching by boron−nitrogen adducts in fluorescent sensors. J Phys Chem B 107:12942–12948

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Bock.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 52.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markham, G.D., Larkin, J.D. & Bock, C.W. Models for boronic acid receptors: a computational structural, bonding, and thermochemical investigation of the HB(OH)2∙H2O∙NH3 and HB(-O-CH2-CH2-O-)∙NH3∙H2O potential energy surfaces. Struct Chem 32, 607–621 (2021). https://doi.org/10.1007/s11224-020-01701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01701-x

Keywords

Navigation