Skip to main content
Log in

Study of hydrogen adsorption by N+- and Si-decorated sumanene

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The bowl-shaped π-conjugated sumanene has been found to give an appreciable capacity in the field of hydrogen storage. In the present paper, two series of substituted sumanene have been studied at MP2/6-311++G(d,p)//b3lyp/6-31++G(d) level of theory. The substitution involved small and large atoms, namely silicon and charged nitrogen, at different positions in the sumanene molecule. The concave side of the buckybowl has been chosen to study the interaction with hydrogen. The calculated binding energies have been corrected with basis set superposition error (BSSE) and with zero-point energy (ZPE). Beside structural properties and thermochemistry, natural population analysis charges and natural bond orbital analysis have been elucidated. Results showed an influence of substitution site and atom size on binding energies, through a comparison with pristine sumanene. For one hydrogen molecule per unit cell, the gravitation storage capacity of nitrogen- and silicium-substituted sumanene has revealed 0.74 wt% and 0.71 wt%, respectively. This theoretical study attempts to give a new insight into the field of hydrogen storage by classifying the eligible candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berry DG, Pasternak AD, Rambach GD (1996) Hydrogen as a future transportation fuel. Energy 21:289–303

    Article  CAS  Google Scholar 

  2. Jain IP (2009) Hydrogen: the fuel for 21st century. Int J Hydrog Energy 34:7368–7378

    Article  CAS  Google Scholar 

  3. Satyapal S, Petrovic J, Read C, Thomas G (2007) The U.S. Department of Energy’s national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements. Catal Today 120(3):246–256

    Article  CAS  Google Scholar 

  4. Andersson J, Grönkvist S (2019) Large-scale storage of hydrogen. Int J Hydrog Energy 44:11901–11919

    Article  CAS  Google Scholar 

  5. Ausfelder F, Bazzanella A (2016) Hydrogen in the chemical industry. In: Stolten D, Emonts B, (Eds) Hydrogen science and engineering: Materials, processes, systems and technology, Wiley-VCH Verlag, pp 19–40

  6. Otto A, Robinius M, Grube T, Schiebahn S, Praktiknjo A, Stolten D (2017) Power-to-steel: reducing CO2 through the integration of renewable energy and hydrogen into the German steel industry. Energies 10(4):451

    Article  Google Scholar 

  7. Ozaki M, Tomura S, Ohmura, Mori YH (2014) Comparative study of large-scale hydrogen storage technologies: is hydrate-based storage at advantage over existing technologies? Int J Hydrog Energy 39(7):3327–3341

    Article  CAS  Google Scholar 

  8. Reuß M, Grube T, Robinius M, Preuster P, Wasserscheid P, Stolten D (2017) Seasonal storage and alternative carriers: a flexible hydrogen supply chain model. Appl Energy 200:290–302

    Article  Google Scholar 

  9. Preuster P, Alekseev A, Wasserscheid P (2017) Hydrogen storage technologies for future energy systems. Ann Rev Chem Biomol Eng 8:445–471

    Article  CAS  Google Scholar 

  10. Zhu ZW, Zheng QR, Wang ZH, Tang Z, Chen W (2017) Hydrogen adsorption on graphene sheets and nonporous graphitized thermal carbon black at low surface coverage. Int J Hydrog Energy 42:18465–18472

    Article  CAS  Google Scholar 

  11. Yürüm Y, Taralp A, Veziroglu TN (2009) Storage of hydrogen innanostructured carbon materials. Int J Hydrog Energy 34:3784–3798

    Article  Google Scholar 

  12. Isidro-Ortega FJ, Pacheco-Sánchez JH, Desales-Guzmán LA (2017) Hydrogen storage on lithium decorated zeolite templated carbon DFT study. Int J Hydrog Energy 42:30704–30717

    Article  CAS  Google Scholar 

  13. Sánchez-Diaz C, Monrabal J, González D, Alfonso D, Peñalvo-López E (2015) Experimental results of the hydrogen production control of a hydrogen energy buffer. Int J Hydrog Energy 40(15):5013–5024

    Article  Google Scholar 

  14. Wu H, Wexler D, Ranjbartoreh AR, Liu H, Wang G (2010) Chemical processing of double-walled carbon nanotubes for enhanced hydrogen storage. Int J Hydrog Energy 35:6345–6349

    Article  CAS  Google Scholar 

  15. Bououdina M, Grant D, Walker G (2006) Review on hydrogen absorbing materials structure, microstructure, and thermodynamic properties. Int J Hydrog Energy 31:177–182

    Article  CAS  Google Scholar 

  16. Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414(6861):353–358

    Article  CAS  Google Scholar 

  17. Durbin D, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrog Energy 38(34):14595–14617

    Article  CAS  Google Scholar 

  18. Paster MD, Ahluwalia R, Berry G, Elgowainy A, Lasher S, McKenney K, Gardiner M (2011) Hydrogen storage technology options for fuel cell vehicles: well-to-wheel costs, energy efficiencies, and greenhouse gas emissions. Int J Hydrog Energy 36(22):14534–14551

    Article  CAS  Google Scholar 

  19. Hwang HT, Varma A (2014) Hydrogen storage for fuel cell vehicles. Curr Opin Chem Eng 5:42–48

    Article  Google Scholar 

  20. Wadnerkar N, Vijayanand K, Chaudhari A (2013) Hydrogen adsorption on C3H3–TM (TM = Sc, Ti) organometallic compounds. Struct Chem 24:369–374

    Article  CAS  Google Scholar 

  21. Tavhare P, Chaudhari A (2019) Nitrogen substitution effect on hydrogen adsorption properties of Ti-decorated benzene. Struct Chem 30:2151–2158

    Article  CAS  Google Scholar 

  22. Tavhare P, Kalamse V, Krishna R, Titus E, Chaudhari A (2016) Hydrogen adsorption on Ce-ethylene complex using quantum chemical methods. Int J Hydrog Energy 41:11730–11735

    Article  CAS  Google Scholar 

  23. Perlt E, Friedrich J, Domaros M, Kirchner B (2011) Importance of structural motifs in liquid hydrogen fluoride. Chem Phys Chem 12:3474–3482

    Article  CAS  Google Scholar 

  24. Grochala W, Edwards PP (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev 104:1283–1316

    Article  CAS  Google Scholar 

  25. Moradi M, Naderi N (2014) First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet. Struct Chem 25:1289–1296

    Article  CAS  Google Scholar 

  26. Jiang H, Cheng XL, Zhang H, Tang YJ, Wang J (2015) Molecular dynamic investigations of hydrogen storage efficiency of graphene sheets with the bubble structure. Struct Chem 26:531–537

    Article  CAS  Google Scholar 

  27. Gaboardi M, Pratt F, Milanese C, Taylor J, Siegel J, Fernando-Alonso F (2019) The interaction of hydrogen with corannulene, a promising new platform storage. Carbon 155:432–437

    Article  CAS  Google Scholar 

  28. Contreras ML, Villarroel I, Rozas R (2016) Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubes. Struct Chem 27:1479–1490

    Article  CAS  Google Scholar 

  29. Armaković S, Armaković SJ, Šetrajčić JP (2013) Hydrogen storage properties of sumanene. Int J Hydrog Energy 38:12190–12198

    Article  Google Scholar 

  30. Armaković S, Armaković SJ, Šetrajčić JP, Dzambas LD (2013) Specificities of boron disubstituted sumanenes. J Mol Model 19:1153–1166

    Article  Google Scholar 

  31. Armaković S, Armaković SJ, Pelemis S, Mirjanic D (2016) Influence of sumanene modifications with boron and nitrogen atoms to its hydrogen adsorption properties. Phys Chem Chem Phys 18:2859–2870

    Article  Google Scholar 

  32. Reisi-Vanani A, Alihoseini L (2014) Computational investigation of the adsorption of molecular hydrogen on the nitrogen-doped corannulene as a carbon nano-structure. Surf Sci 621:146–151

    Article  CAS  Google Scholar 

  33. Petrushenko IK, Petrushenko KB (2018) DFT study of single-walled carbon hollows as media for hydrogen storage. Comput Theo Chem 1140:80–85

    Article  CAS  Google Scholar 

  34. Reisi-Vanani A, Shamsali F (2017) Influence of nitrogen doping in sumanene framework toward hydrogen storage: a computational study. J Mol Graphics and Modeling 76:475–487

    Article  CAS  Google Scholar 

  35. Reisi-Vanani A, Mehrdoust S (2016) Effect of boron doping in sumanene frame toward hydrogen physisorption: a theoretical study. Int J Hydrog Energy 41:15254–15265

    Article  CAS  Google Scholar 

  36. Gaboardi M, Pratt F, Milanese C, Taylor J, Siegel J, Fernandez-Alonso F (2019) The interaction of hydrogen with corannulene, a promising new platform for energy storage. Carbon 155:432–437

    Article  CAS  Google Scholar 

  37. Derrar SN, Belhakem M (2017) Heterosubstituted sumanene as media for hydrogen storage: a theoretical study. Int J Hydrog Energy 42:19583–19590

    Article  CAS  Google Scholar 

  38. Boys SF, Bernardi FD (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  39. Gaussian 03, revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford CT

  40. Sastry GN, Priyakumar UD (2001) The role of heteroatom substitution in the rigidity and curvature of buckybowls. A theoretical study. J Chem Soc Perkin Trans 2:30–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siham Naima Derrar.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derrar, S.N. Study of hydrogen adsorption by N+- and Si-decorated sumanene. Struct Chem 32, 759–765 (2021). https://doi.org/10.1007/s11224-020-01655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01655-0

Keywords

Navigation