Skip to main content

Advertisement

Log in

First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Employing density functional calculations including an empirical dispersion term, we investigated the hydrogenation of an aluminum nitride nanosheet (h-AlN) with atomic and molecular hydrogen. It was found that atomic H prefers to be adsorbed on an N atom rather than Al, releasing energy of 21.1 kcal/mol. The HOMO/LUMO energy gap of the sheet is dramatically reduced from 107.9 to 44.5 kcal/mol, upon the adsorption of one hydrogen atom. The adsorption of atomic H on the h-AlN presents properties which are promising for nanoelectronic applications. The molecular H2 was found to be adsorbed collinearly on an N atom and dissociated to two H atoms on Al–N bond. Calculated barrier and adsorption energies for this dissociation process are about +18.9 and −1.9 kcal/mol. We predict that each nitrogen atom in an AlN sheet can adsorb two hydrogen molecules on opposite sides of the sheet, and thus the gravimetric density for hydrogen storage on AlN sheet is evaluated to be about 8.9 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zabaniotou A, Ioannidou O, Antonakou E, Lappas A (2008) Int J Hydrogen Energy 33:2433

    Article  CAS  Google Scholar 

  2. Kim BJ, Lee YS, Park SJ (2008) Int J Hydrogen Energy 33:2254

    Article  CAS  Google Scholar 

  3. Makaka G, Meyer EL, McPherson M (2008) Renew Energy 33:1959

    Article  Google Scholar 

  4. Banapurmath NR, Tewari PG, Hosmath RS (2008) Renew Energy 33:1982

    Article  CAS  Google Scholar 

  5. Kanoglu M, Dincer I, Rosen MA (2007) Int J Hydrogen Energy 32:4250

    Article  CAS  Google Scholar 

  6. Abbasi T, Abbasi SA (2011) Renew Sust Energ Rev 15:3034

    Article  Google Scholar 

  7. Bao QX, Zhang H, Gao SW, Li XD, Cheng XL (2010) Struct Chem 21:1111

    Article  CAS  Google Scholar 

  8. Dinadayalane TC, Leszczynski J (2010) Practical Aspects of Computational Chemistry. Springer, Netherlands, pp 297–313

    Google Scholar 

  9. http://www.hydrogen.energy.gov

  10. Dinadayalane TC, Kaczmarek A, Lukaszewicz J, Leszczynski J (2007) J Phys Chem C 111:7376

    Article  CAS  Google Scholar 

  11. Kaczmarek A, Dinadayalane TC, Lukaszewicz J, Leszczynski J (2007) Int J Quantum Chem 107:2211

    Article  CAS  Google Scholar 

  12. Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86

    Article  CAS  Google Scholar 

  13. Dinadayalene TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theory Comput 6:1351

    Article  Google Scholar 

  14. Bagheri Z, Moradi M (2013) Struct Chem. doi:10.1007/s11224-013-0321-2

    Google Scholar 

  15. Beheshtian J, Bagheri Z, Kamifiroozi M, Ahmadi A (2012) Struct Chem 23:653

    Article  CAS  Google Scholar 

  16. Wu XJ, Yang JL, Zeng XC (2006) J Chem Phys 125:044704

    Article  Google Scholar 

  17. Gil A, Trujillano R, Vicente MA, Korili SA (2009) Int J Hydrogen Energy 34:8611

    Article  CAS  Google Scholar 

  18. Chan SP, Chen G, Gong XG, Liu ZF (2001) Phys Rev Lett 87:205502

    Article  CAS  Google Scholar 

  19. Fu Q, Negro E, Chen G, Law DC, Li CH, Hicks RF, Raghavachari K (2002) Phys Rev B 65:075318

    Article  Google Scholar 

  20. Schailey R, Ray AK (2000) Comput Mater Sci 22:169

    Article  Google Scholar 

  21. Mei Y, Thurmer DJ, Deneke C, Kiravittaya S, Chen YF, Dadgar A, Bertram F, Bastek B, Krost A, Christen J (2009) ACS Nano 3:1663

    Article  CAS  Google Scholar 

  22. Wang Q, Sun Q, Jena P, Kawazoe Y (2009) ACS Nano 3:621

    Article  CAS  Google Scholar 

  23. Liu C, Hu Z, Wu Q, Wang X, Chen Y, Sang H, Zhu J, Deng S, Xu N (2005) J Am Chem Soc 127:1318

    Article  CAS  Google Scholar 

  24. Du A, Zhu Z, Chen Y, Lu G, Smith SC (2009) Chem Phys Lett 469:183

    Article  CAS  Google Scholar 

  25. Ma Y, Huo K, Wu Q, Lu Y, Hu Y, Hu Z, Chen Y (2006) J Mater Chem 16:2834

    Article  CAS  Google Scholar 

  26. Li Y, Shen P, Zhang SB, Chen Z (2009) Nanotechnology 20:215701

    Article  Google Scholar 

  27. Zhang X, Liu Z, Hark S (2007) Solid State Commun 143:317

    Article  CAS  Google Scholar 

  28. de Almeida E, de Brito Mota F, de Castilho CMC, Kakanakova-Georgieva A, Gueorguiev G (2012) Eur Phys J B 85:1

    Article  Google Scholar 

  29. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  30. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839

    Article  Google Scholar 

  31. Xu S, Wang C, Cui Y (2010) Struct Chem 21:519

    Article  CAS  Google Scholar 

  32. Paukku Y, Michalkova A, Leszczynski J (2008) Struct Chem 19:307

    Article  CAS  Google Scholar 

  33. Wang C, Xu S, Ye L, Lei W, Cui Y (2010) Struct Chem 21:1215

    Article  CAS  Google Scholar 

  34. Moradi M, Peyghan AA, Bagheri Z, Kamifiroozi M (2012) J Mol Model 18:3535

    Article  CAS  Google Scholar 

  35. Rastegar SF, Peyghan AA, Ghenaatian HR, Hadipour NL (2013) Appl Surf Sci 274:217

    Article  CAS  Google Scholar 

  36. Yang RT (2000) Carbon 38:623

    Article  CAS  Google Scholar 

  37. McAfee JL, Poirier B (2009) J Chem Phys 130:064701

    Article  Google Scholar 

  38. Ruffieux P, Gröning O, Bielmann M, Mauron P, Schlapbach L, Gröning P (2002) Phys Rev B 66:245416

    Article  Google Scholar 

  39. Lin F, Zhou G, Li Z, Li J, Wu J, Duan W (2009) Chem Phys Lett 475:82

    Article  CAS  Google Scholar 

  40. Lim SH, Lin J (2008) Chem Phys Lett 466:197

    Article  CAS  Google Scholar 

  41. Han SS, Kang JK, Lee HM, Van Duin AC, Goddard WA III (2005) J Chem Phys 123:114704

    Article  Google Scholar 

  42. Graetz J, Chaudhuri S, Lee Y, Vogt T, Muckerman JT, Reilly JJ (2006) Phys Rev B 74:214114

    Article  Google Scholar 

  43. Dresselhaus MS (2004) Basic Research Needs for the Hydrogen Economy, 2nd edn. Office of Basic Energy Sciences, U.S. Department of Energy, Washington, DC

    Google Scholar 

  44. Varin RA, Czujko T, Chiu C, Wronski Z (2006) J Alloys Compd 424:356

    Article  CAS  Google Scholar 

  45. Bhatia SK, Myers AL (2006) Langmuir 22:1688

    Article  CAS  Google Scholar 

  46. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127

    Article  CAS  Google Scholar 

  47. Chen JP, Yang RT (1989) Surf Sci 216:481

    Article  CAS  Google Scholar 

  48. Shevlin SA, Guo ZX (2007) Phys Rev B 76:024104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Moradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradi, M., Naderi, N. First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet. Struct Chem 25, 1289–1296 (2014). https://doi.org/10.1007/s11224-014-0410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0410-x

Keywords

Navigation