Skip to main content
Log in

Theoretical studies of size effects on surfacial properties for CL-20 and NTO nanoparticles

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) possess the unique physical and chemical properties compared with gas-phase molecule and bulk crystal. Hence, the energetics, electronic structure, and vibrational properties of CL-20 and NTO NPs were investigated by the combinational strategy based on density-functional tight-binding (DFTB) and density-functional theory (DFT) methods. The results show that NPs possess quite different features from the isolated state molecule and the bulk crystal. The excess energies, surface energies, and enthalpy of sublimation for the NPs are predicted. The surface-induced surface states of the CL-20 and NTO NPs result in the significant decrease on the energy gaps and the formation of active sites on the surfaces. The vibrational properties related to the decomposition pathways for both CL-20 and NTO NPs, gas molecules, and bulk crystals are discussed and compared with previous theoretical and experimental values. Our results are expected to provide basic insights into the understandings of the surface effect of nano-sized energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu TY, Xu BY, Chu EY (1998) The study of detonating explosives sensitive to the short pulse. Initiat Pyrot 1:10–14

    Google Scholar 

  2. Xu HH, Sheng DL (2000) Evaluation anti prospect of the fining technology of loading materials for initiating explosive device. Initiat Pyrot 2:39–43

    Google Scholar 

  3. Dervaux M, Mala J (1988) Influence delagranu-lometrie de la charge sur les proprictes deloniques dexplosifs composites. The 9th Int. Conf. of ICT

  4. Armstrong RW, Coffey CS, DeVost VF (1990) Crystal size dependence for impact initiation for cyclotrimethylenetrinitramine explosive. J Appl Phys 68:979–984

    Article  CAS  Google Scholar 

  5. Tarver C, Chidester S, Nichols A (1996) Critical conditions for impact- and shock-induced hot-spots in solid explosives. J Phys Chem 100:5794–5799

    Article  CAS  Google Scholar 

  6. Kumar R, Siril PF, Soni P (2014) Preparation of nano-RDX by evaporation assisted solvent antisolvent interaction. Propell Explos Pyrot 39:383–389

    Article  CAS  Google Scholar 

  7. Risse B, Schnell F, Spitzer D (2014) Synthesis and desensitization of nano-β-HMX. Propell Explos Pyrot 39:397–401

    Article  CAS  Google Scholar 

  8. Song X, Wang Y, An C (2008) Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine. J Hazard Mater 159:222–229

    Article  CAS  Google Scholar 

  9. Yang G, Nie F, Huang H (2006) Preparation and characterization of nano-TATB explosive. Propell Explos Pyrot 31:390–394

    Article  CAS  Google Scholar 

  10. Pivkina A, Ulyanova P, Frolov Y (2004) Nanomaterials for heterogeneous combustion. Propell Explos Pyrot 29:39–48

    Article  CAS  Google Scholar 

  11. Spitzer D, Comet M, Baras C (2010) Energetic nano-materials: opportunities for enhanced performances. J Phys Chem Solids 71:100–108

    Article  CAS  Google Scholar 

  12. Liu R, Yu W, Zhang T (2013) Nanoscale effect on thermal decomposition kinetics of organic particles: dynamic vacuum stability test of 1,3,5-triamino-2,4,6-trinitrobenzene. Phys Chem Chem Phys 15:7889–7895

    Article  CAS  Google Scholar 

  13. Pei C, Li Z, Luo Q (2006) Preparation and characterization of nano structured HMX. Nanoscience 11:234–237

    CAS  Google Scholar 

  14. Sharia O, Kuklja MM (2012) Rapid materials degradation induced by surfaces and voids: ab initio modeling of β-octatetramethylene tetranitramine. J Am Chem Soc 134:11815–11820

    Article  CAS  Google Scholar 

  15. Kuklja MM, Tsyshevsky RV, Sharia O (2014) Effect of polar surfaces on decomposition of molecular materials. J Am Chem Soc 136:13289–13302

    Article  CAS  Google Scholar 

  16. Bayat Y, Zeynali V (2011) Preparation and characterization of nano-CL-20 explosive. J Energ Mater 29:281–291

    Article  CAS  Google Scholar 

  17. Wang J, Li J, An C, Hou CH, Xu WZ, Li XD (2012) Study on ultrasound- and spray-assisted precipitation of CL-20. Propell Explos Pyrot 37:670–675

    Article  CAS  Google Scholar 

  18. Wang DJ, Zhang JL, Wang JY (2007) Preparation of nanometer NTO by W/O microemulsion. Initiat Pyrot 1:9–14

    Google Scholar 

  19. Yang GC, Nie FD, Li JS (2007) Preparation and characterization of nano-NTO explosive. Chin J Energ Mater 25:35–47

    Article  CAS  Google Scholar 

  20. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free atom reference data. Phys Rev Lett 102:073005–073004

    Article  Google Scholar 

  21. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  22. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  23. Zhao XQ, Shi NC (1995) Crystal sturcture of ε-hexanitrohexaazaisowurtzitane. Chin Sci Bull 40:2158–2160

    Article  Google Scholar 

  24. Zhurova EA, Pinkerton AA (2001) Chemical bonding in energetic materials: β-NTO. Acta Crystallogr B 57:359–365

    Article  CAS  Google Scholar 

  25. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  26. Seifert G (2007) Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme. J Phys Chem A 111:5609–5613

    Article  CAS  Google Scholar 

  27. Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684

    Article  CAS  Google Scholar 

  28. Ge NN, Wei YK, Ji GF, Chen XR, Zhao F, Wei DQ (2012) Initial decomposition of the condensed-phase β-HMX under shock waves: molecular dynamics simulations. J Phys Chem B 116:13696–13704

    Article  CAS  Google Scholar 

  29. Chen HX, Chen SS, Jin SH (2007) Molecular dynamic simulation of the crystallization of HNIW. Chin J Explos Propll 30:1–4

    Google Scholar 

  30. Ma S, Yuan JM, Liu YC, Chang SJ, Wang JH, Yu YW (2014) Prediction of crystal morphology on NTO. Chin J Explos Propell 1:53–57

    Google Scholar 

  31. Goede P, Latypov N, Ostmark H (2004). Propell Explos Pyrot 29:205–208

    Article  CAS  Google Scholar 

  32. Sorescu DC, Sutton TRL, Thompson DL (1996) Theoretical and experimental studies of the structure and vibrational spectra of NTO. J Mol Struct 384:87–99

    Article  CAS  Google Scholar 

  33. Hiyoshi RI, Kohno Y, Nakamura J (2004) Vibrational assignment of energetic material 5-Nitro-2,4-dihydro-1,2,4-triazole-3-one (NTO) with labeled isomers. J Phys Chem A 108:5915–5920

    Article  CAS  Google Scholar 

  34. Xiang D, Wu Q, Zhu WH (2018) Ab initio molecular dynamics studies on the decomposition mechanisms of CL-20 crystal under extreme conditions. Chin J Energ Mater 26:59–65

    Google Scholar 

  35. Long GT, Brems BA, Wight CA (2002) Thermal activation of the high explosive NTO: sublimation, decomposition, and autocatalysis. J Phys Chem B 106:4022–4026

    Article  CAS  Google Scholar 

  36. Yana K, Sergiy O, Gulnara K (2006) Are 1,5- and 1,7-dihydrodiimidazo[4,5-b:4′,5′-e]pyrazine the main products of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) alkaline hydrolysis? A DFT study of vibrational spectra. J Mol Struct 794:288–302

    Article  Google Scholar 

  37. Qasim M, Fredrickson H, Honea P (2005) Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction. SAR QSAR Environ Res 16:495–515

    Article  CAS  Google Scholar 

  38. Oxley JC, Smith JL, Zhou ZL (2009) Thermal decomposition studies on NTO and NTO/TNT. J Radiat Res 50:495–506

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 21773119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, Z. & Zhu, W. Theoretical studies of size effects on surfacial properties for CL-20 and NTO nanoparticles. Struct Chem 32, 565–580 (2021). https://doi.org/10.1007/s11224-020-01642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01642-5

Keywords

Navigation