Skip to main content
Log in

The Lewis acidities of gold(I) and gold(III) derivatives: a theoretical study of complexes of AuCl and AuCl3

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Chloride complexes of gold(I) (seventeen) and gold(III) (seventeen) with different ligands (including H, C, N, O, P, S as interacting atoms) have been studied at the CCSD(T)/CBS level. The computed geometries were compared with those found in the Cambridge Structural Database and the dissociation energies related with those previously reported in the literature by Yamamoto et al. Some special processes catalysed by these gold complexes such as bond-breaking (dihydrogen, cyclopropane) and arenes reactivity were studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dhar S, Daniel WL, Giljohann DA, Mirkin CA, Lippard SJ (2009). J Am Chem Soc 131:14652–14653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dada O, Sánchez-Sanz G, Tacke M, Zhu X (2018). Tetrahedron Lett 59:2904–2908

    Article  CAS  Google Scholar 

  3. Curran D, Dada O, Müller-Bunz H, Rothemund M, Sánchez-Sanz G, Schobert R, Zhu X, Tacke M (2018). Molecules 23:2031

  4. Wolfgang W, Oyinlola D, Cillian OB, Ingo O, Goar S-S, Claudia S, Carsta W, Xiangming Z, Matthias T (2017). Lett Drug Des Discov 14:125–134

    Google Scholar 

  5. Fernández-Gallardo J, Elie BT, Sulzmaier FJ, Sanaú M, Ramos JW, Contel M (2014). Organometallics 33:6669–6681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Son G, Son Y, Jeon H, Kim J-Y, Lee S (2020). Scripta Mater 174:33–38

    Article  CAS  Google Scholar 

  7. Calzolari A, Cicero G, Cavazzoni C, Di Felice R, Catellani A, Corni S (2010). J Am Chem Soc 132:4790–4795

    Article  CAS  PubMed  Google Scholar 

  8. Iori F, Di Felice R, Molinari E, Corni S (2009). J Comput Chem 30:1465–1476

    Article  CAS  PubMed  Google Scholar 

  9. Shen HC (2008). Tetrahedron 64:3885–3903

    Article  CAS  Google Scholar 

  10. Fürstner A (2009). Chem Soc Rev 38:3208–3221

    Article  PubMed  CAS  Google Scholar 

  11. Schmidbaur H, Schier A (2010). Organometallics 29:2–23

    Article  CAS  Google Scholar 

  12. Schmidbaur H, Schier A (2012). Arab J Sci Eng 37:1187–1225

    Article  CAS  Google Scholar 

  13. Shen HC, Graham TH (2013). Drug Discov Today Technol 10:e3–e14

    Article  PubMed  Google Scholar 

  14. Boronat M, Leyva-Pérez A, Corma A (2014). Acc Chem Res 47:834–844

    Article  CAS  PubMed  Google Scholar 

  15. Soriano E, Fernández I (2014). Chem Soc Rev 43:3041–3105

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Muratore ME, Echavarren AM (2015). Chem Eur J 21:7332–7339

    Article  CAS  PubMed  Google Scholar 

  17. Dorel R, Echavarren AM (2015). Chem Rev 115:9028–9072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ranieri B, Escofet I, Echavarren AM (2015). Org Biomol Chem 13:7103–7118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Legon AC, Walker NR (2018). PCCP 20:19332–19338

    Article  CAS  PubMed  Google Scholar 

  20. Vogel P, Houk KN (2019) Organic chemistry. Theory, reactivity and mechanisms in modern synthesis. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  21. Hashmi ASK, Toste DF (2012) Modern gold catalyzed synthesis. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  22. Pombeiro AJL (2013) Advances in organometallic chemistry and catalysis: the silver/gold Jubilee International conference on organometallic chemistry celebratory book. Wiley & sons Inc, Hoboken

    Book  Google Scholar 

  23. Pyykkö P (2008). Chem Soc Rev 37:1967–1997

    Article  PubMed  CAS  Google Scholar 

  24. Söhnel T, Hermann H, Schwerdtfeger P (2005). J Phys Chem B 109:526–531

    Article  PubMed  CAS  Google Scholar 

  25. Persson K (2014)

  26. Halder A, Kundu P, Ravishankar N, Ramanath G (2009). J Phys Chem C 113:5349–5351

    Article  CAS  Google Scholar 

  27. Clark ES, Templeton DH, MacGillavry CH (1958). Acta Crystallogr 11:284–288

    Article  CAS  Google Scholar 

  28. Hargittai M, Schulz A, Réffy B, Kolonits M (2001). J Am Chem Soc 123:1449–1458

    Article  CAS  Google Scholar 

  29. Evans CJ, Gerry MCL (2000). J Mol Spectrosc 203:105–117

    Article  CAS  PubMed  Google Scholar 

  30. Allen FH (2002). Acta Crystallogr Sect B: Struct Sci 58:380–388

    Article  CAS  Google Scholar 

  31. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006). J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  32. Hellenbrandt M (2004). Crystallogr Rev 10:17–22

    Article  CAS  Google Scholar 

  33. Obenchain DA, Frank DS, Grubbs GS, Pickett HM, Novick SE (2017). J Chem Phys 146:204302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Evans CJ, Reynard LM, Gerry MCL (2001). Inorg Chem 40:6123–6131

    Article  CAS  PubMed  Google Scholar 

  35. Mullaney JC, Stephens SL, Zaleski DP, Sprawling MJ, Tew DP, Walker NR, Legon AC (2015). J Phys Chem A 119:9636–9643

    Article  CAS  PubMed  Google Scholar 

  36. Medcraft C, Bittner DM, Tew DP, Walker NR, Legon AC (2016). J Chem Phys 145:194306

    Article  PubMed  CAS  Google Scholar 

  37. Patil NT, Yamamoto Y (2007) Arkivoc v:6-19

  38. Yamamoto Y (2007). J Org Chem 72:7817–7831

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto Y, Gridnev ID, Patil NT, Jin T (2009). Chem Commun:5075–5087

  40. Gorin DJ, Toste FD (2007). Nature 446:395–403

    Article  CAS  PubMed  Google Scholar 

  41. Gaillard S, Slawin AMZ, Bonura AT, Stevens ED, Nolan SP (2010). Organometallics 29:394–402

    Article  CAS  Google Scholar 

  42. Shaw AP, Ghosh MK, Törnroos KW, Wragg DS, Tilset M, Swang O, Heyn RH, Jakobsen S (2012). Organometallics 31:7093–7100

    Article  CAS  Google Scholar 

  43. Zhu R-X, Zhang D-J, Guo J-X, Mu J-L, Duan C-G, Liu C-B (2010). J Phys Chem A 114:4689–4696

    Article  CAS  PubMed  Google Scholar 

  44. Rabaâ H, Engels B, Hupp T, Hashmi ASK (2007). Int J Quantum Chem 107:359–365

    Article  CAS  Google Scholar 

  45. Esterhuysen C, Frenking G (2011). Chem Eur J 17:9944–9956

    Article  CAS  PubMed  Google Scholar 

  46. Li H, Li Q, Li R, Li W, Cheng J (2011). J Chem Phys 135:074304

    Article  PubMed  CAS  Google Scholar 

  47. Grabowski SJ, Ruipérez F (2016). Phys Chem Chem Phys 18:12810–12818

    Article  CAS  PubMed  Google Scholar 

  48. Pérez-Bitrián A, Baya M, Casas JM, Falvello LR, Martín A, Menjón B (2017). Chem Eur J 23:14918–14930

    Article  PubMed  CAS  Google Scholar 

  49. Zhang G, Yue H, Weinhold F, Wang H, Li H, Chen D (2015). ChemPhysChem 16:2424–2431

    Article  CAS  PubMed  Google Scholar 

  50. Møller C, Plesset MS (1934). Phys Rev 46:618–622

    Article  Google Scholar 

  51. Dunning TH (1989). J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  52. Papajak E, Zheng J, Xu X, Leverentz HR, Truhlar DG (2011). J Chem Theor Comput 7:3027–3034

    Article  CAS  Google Scholar 

  53. Peterson KA, Puzzarini C (2005). Theor Chem Acc 114:283–296

    Article  CAS  Google Scholar 

  54. Purvis GD, Bartlett RJ (1982). J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  55. Halkier A, Klopper W, Helgaker T, Jørgensen P, Taylor PR (1999). J Chem Phys 111:9157–9167

    Article  CAS  Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Todd A. Keith Gaussian 16, revision B.01. Gaussian, Inc., Wallingford

    Google Scholar 

  57. Lu T, Chen F (2012). J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  58. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  59. Rocchigiani L, Budzelaar PHM, Bochmann M (2019). Chem Sci 10:2633–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016). Acta Crystallogr Sect B 72:171–179

    Article  CAS  Google Scholar 

  61. Dinger MB, Henderson W (1999). J Organomet Chem 577:219–222

    Article  CAS  Google Scholar 

  62. Jiménez-Núñez E, Echavarren AM (2008). Chem Rev 108:3326–3350

    Article  PubMed  CAS  Google Scholar 

  63. Jiang M, Liu L-P, Shi M, Li Y (2010). Org Lett 12:116–119

    Article  CAS  PubMed  Google Scholar 

  64. Huang H, Zhou Y, Liu H (2011). Beilstein J Org Chem 7:897–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zang W, Wei Y, Shi M (2019). Chem Commun 55:8126–8129

    Article  CAS  Google Scholar 

  66. Bauzá A, Frontera A (2018). Inorganics 6:64

    Article  CAS  Google Scholar 

  67. Frontera A, Bauzá A (2018). Chem Eur J 24:7228–7234

    Article  CAS  PubMed  Google Scholar 

  68. Fuchita Y, Utsunomiya Y, Yasutake M (2001) J Chem Soc. Dalton Trans:2330–2334

  69. de Haro T, Nevado C (2001). J Am Chem Soc 132:1512–1513

    Article  CAS  Google Scholar 

  70. de Haro T, Nevado C (2011). Synthesis 2011:2530–2539

    Article  CAS  Google Scholar 

  71. Gaillard S, Slawin AMZ, Nolan SP (2010). Chem Commun 46:2742–2744

    Article  CAS  Google Scholar 

  72. Lu P, Boorman TC, Slawin AMZ, Larrosa I (2010). J Am Chem Soc 132:5580–5581

    Article  CAS  PubMed  Google Scholar 

  73. Mascal M, Armstrong A, Bartberger MD (2002). J Am Chem Soc 124:6274–6276

    Article  CAS  PubMed  Google Scholar 

  74. Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM (2002). Angew Chem Int Ed 41:3389–3392

    Article  Google Scholar 

  75. Alkorta I, Rozas I, Elguero J (2002). J Am Chem Soc 124:8593–8598

    Article  CAS  PubMed  Google Scholar 

  76. Salai Cheettu Ammal S, Ananthavel SP, Venuvanalingam P, Hegde MS (1998). J Phys Chem A 102:532–536

    Article  Google Scholar 

  77. Wei Y, Wang B-W, Hu S-W, Chu T-W, Tang L-T, Liu X-Q, Wang Y, Wang X-Y (2005). J Phys Org Chem 18:625–631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is dedicated to Professor Daniel Carmona for his helpful discussions. Thanks are also given to the CTI (CSIC) and the Irish Centre for High-End Computing for their continued computational support. We wish to acknowledge the use of the EPSRC funded Chemical Database Service at Daresbury (“The United Kingdom Chemical Database Service”, Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. Chem. Inf. Comput. Sci. 1996, 36, 746–749). We are grateful to Prof. Isabel Rozas for her comments.

Funding

The research was financially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (Projects PGC2018-094644-B-C22) and Dirección General de Investigación e Innovación de la Comunidad de Madrid (PS2018/EMT-4329 AIRTEC-CM). This research was funded by Science Foundation of Ireland (SFI), grant number 18/SIRG/5517.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Goar Sánchez-Sanz or Ibon Alkorta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 8663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo, C., Sánchez-Sanz, G., Elguero, J. et al. The Lewis acidities of gold(I) and gold(III) derivatives: a theoretical study of complexes of AuCl and AuCl3. Struct Chem 31, 1909–1918 (2020). https://doi.org/10.1007/s11224-020-01590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01590-0

Keywords

Navigation