Skip to main content

Advertisement

Log in

Chemometric modeling of PET imaging agents for diagnosis of Parkinson’s disease: a QSAR approach

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Recently, adenosine A2A receptor antagonists have been identified as an interesting drug target for the treatment of Parkinson’s disease (PD). Radiolabelled molecular imaging technologies such as positron emission tomography (PET) have emerged in the research field of medicinal chemistry as a diagnostic tool for PD. In the current study, we have performed quantitative structure–activity relationship (QSAR) analysis of 35 xanthine ligand PET tracers as A2AR (adenosine receptors) antagonists in order to determine their structural features required to have binding affinity and selectivity towards A2AR. The division of the dataset into training and test sets was done using a random method, while the feature selection for the binding affinity was done using Genetic Algorithm (GA). The best model with five descriptors was obtained using the spline option in the GA run. QSAR models with four descriptors were also developed for A2AR selectivity, where significant descriptors were selected from the large pool of descriptors using stepwise regression method followed by Best Subset Selection (BSS) method. Furthermore, to improve the quality of the external predictions, we used the “Intelligent Consensus Predictor” tool (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/). Both the models showed robustness in terms of statistical parameters. Molecular docking studies have been carried out to understand the molecular interactions between the ligand and receptor, and the results are then correlated with the structural features obtained from the QSAR models. Furthermore, the information derived from the newly found descriptors gives an insight for the development of new candidate PET tracers for the use in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:1–21

    Article  Google Scholar 

  2. Voss T, Ravina B (2008) Neuroprotection in Parkinson’s disease: myth or reality? Curr Neurol Neurosci Rep 8:304–309

    Article  PubMed  Google Scholar 

  3. Ahmed SS, Ahameethunisa A, Santosh W (2010) QSAR and pharmacophore modeling of 4-arylthieno [3, 2-d] pyrimidine derivatives against adenosine receptor of Parkinson’s disease. J Theor Comput Chem 9:975–991

    Article  CAS  Google Scholar 

  4. Chen JJ, Swope DM (2007) Pharmacotherapy for Parkinson’s disease. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 27:161S–173S

    Article  CAS  Google Scholar 

  5. Jankovic J, Stacy M (2007) Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs 21:677–692

    Article  CAS  PubMed  Google Scholar 

  6. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  7. Fuxe K, Ferré S, Genedani S, Franco R, Agnati LF (2007) Adenosine receptor–dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 92:210–217

    Article  CAS  PubMed  Google Scholar 

  8. Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli N, Schwarzschild MA (2001) Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143–RC143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grondin R, Bedard PJ, Tahar AH, Gregoire L, Mori A, Kase H (1999) Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 52:1673–1673

    Article  CAS  PubMed  Google Scholar 

  10. Ongini E, Monopoli A, Impagnatiello F, Fredduzzi S, Schwarzschild M, Chen JF (2001) Dual actions of A2A adenosine receptor antagonists on motor dysfunction and neurodegenerative processes. Drug Dev Res 52:379–386

    Article  CAS  Google Scholar 

  11. Ikeda K, Kurokawa M, Aoyama S, Kuwana Y (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem 80:262–270

    Article  CAS  PubMed  Google Scholar 

  12. Pike VW (2009) PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci 30:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207

    Article  PubMed  Google Scholar 

  14. Roy K (2018) Quantitative structure-activity relationships (QSARs): a few validation methods and software tools developed at the DTC laboratory. J Indian Chem Soc 95:1497–1502

    CAS  Google Scholar 

  15. Gramatica P (2020) Principles of QSAR modeling: comments and suggestions from personal experience. IJQSPR 5:1–37. https://doi.org/10.4018/IJQSPR.20200701.oa1

    Article  Google Scholar 

  16. Puzyn T, Leszczynski J, Cronin MT, eds. (2010) Recent advances in QSAR studies: methods and applications, Vol. 8 Springer Science & Business Media, Berlin, Germany

  17. Gao DW, Wang P, Yang L, Peng YZ, Liang H (2002) Study on the screening of molecular structure parameter in QSAR model. J Environ Sci Heal A 37:601–609

    Article  Google Scholar 

  18. Tropsha A (2004) Application of predictive QSAR models to database mining. Chemoinformatics Drug Discov 23:437–455

    Google Scholar 

  19. Roy K (2020) Ecotoxicological QSARs. Springer, New York

    Book  Google Scholar 

  20. Kar S, Roy K, Leszczynski J (2017) In: Roy K. (eds) On applications of QSARs in food and agricultural sciences: history and critical review of recent developments. Advances in QSAR Modeling, Springer, Cham, Switzerland

  21. Ojha PK, Roy K (2018) Chemometric modeling of odor threshold property of diverse aroma components of wine. RSC Adv 8:4750–4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tantra R, Oksel C, Puzyn T, Wang J, Robinson KN, Wang XZ, Ma CY, Wilkins T (2015) Nano (Q) SAR: Challenges, pitfalls and perspectives. Nanotoxicology 9:636–642

    Article  CAS  PubMed  Google Scholar 

  23. Mikolajczyk A, Gajewicz A, Mulkiewicz E, Rasulev B, Marchelek M, Diak M, Hirano S, Zaleska-Medynska A, Puzyn T (2018) Nano-QSAR modeling for ecosafe design of heterogeneous TiO 2-based nano-photocatalysts. Environ Sci Nano 5:1150–1160

    Article  CAS  Google Scholar 

  24. Mikolajczyk A, Sizochenko N, Mulkiewicz E, Malankowska A, Rasulev B, Puzyn T (2019) A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective. Nanoscale 11:11808–11818

    Article  CAS  PubMed  Google Scholar 

  25. Hoekman D (1996) Exploring QSAR fundamentals and applications in chemistry and biology, volume 1. hydrophobic, electronic and steric constants, Volume 2 J. Am. Chem. Soc. 1995, 117, 9782. J Am Chem Soc 118:10678-10678

  26. Klein C, Kaiser D, Kopp S, Chiba P, Ecker GF (2002) Similarity based SAR (SIBAR) as tool for early ADME profiling. J Comput Aided Mol Des 16:785–793

    Article  CAS  PubMed  Google Scholar 

  27. Sebastián-Pérez V, Martínez MJ, Gil C, Campillo NE, Martínez A, Ponzoni I (2019) QSAR Modelling to identify LRRK2 inhibitors for Parkinson’s disease. J Integr Bioinform 16

  28. Khanfar MA, Al-Qtaishat S, Habash M, Taha MO (2016) Discovery of potent adenosine A2a antagonists as potential anti-Parkinson disease agents. Non-linear QSAR analyses integrated with pharmacophore modeling. Chem Biol Interact 254:93–101

    Article  CAS  PubMed  Google Scholar 

  29. Tamiji Z, Salahinejad M, Niazi A (2018) Molecular modeling of potential PET imaging agents for adenosine receptor in Parkinson’s disease. Struct Chem 29:467–479

    Article  CAS  Google Scholar 

  30. MarvinSketch software, https://www.chemaxon.com. Accessed on 05 Jan 2020

  31. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  CAS  PubMed  Google Scholar 

  32. Dragon version 7, Kodesrl, Milan, Italy, 2016; software available at http://www.talete.mi.it/index.htm. Accessed 07 Jan 2020

  33. Golbraikh A, Shen M, Xiao Z, Xiao Y-D, Lee K-H, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17:241–253

    Article  CAS  PubMed  Google Scholar 

  34. Golbraikh A, Tropsha A (2000) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers 5:231–243

    Article  CAS  Google Scholar 

  35. Khan PM, Roy K (2018) Current approaches for choosing feature selection and learning algorithms in quantitative structure–activity relationships (QSAR). Expert Opin Drug Discovery 13:1075–1089

    Article  CAS  Google Scholar 

  36. Devillers J (1996) Genetic algorithms in molecular modeling. Academic Press, Cornwall, Great Britain

    Google Scholar 

  37. Pope PT, Webster JT (1972) The use of an F-statistic in stepwise regression procedures. Technometrics 14:327–340

    Google Scholar 

  38. Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33

    Article  CAS  Google Scholar 

  39. Roy K, Ambure P, Kar S, Ojha PK (2018) Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J Chemom 32:e2992

    Article  Google Scholar 

  40. DTC Lab QSAR Tools http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab

  41. Roy K, Mitra I (2011) On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen 14:450–474

    Article  CAS  PubMed  Google Scholar 

  42. Gadaleta D, Mangiatordi GF, Catto M, Carotti A, Nicolotti O (2016) Applicability domain for QSAR models: where theory meets reality. IJQSPR 1:45–63

    Google Scholar 

  43. Congreve M, Andrews SP, Doré AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A, Weir M (2012) Discovery of 1, 2, 4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu G, Robertson DH, Brooks Iii CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—a CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562

    Article  CAS  PubMed  Google Scholar 

  45. Pan AC, Borhani DW, Dror RO, Shaw DE (2013) Molecular determinants of drug–receptor binding kinetics. Drug Discov Today 18:667–673

    Article  CAS  PubMed  Google Scholar 

  46. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yun YH, Wu DM, Li GY, Zhang QY, Yang X, Li QF, Cao DS, Xu QS (2017) A strategy on the definition of applicability domain of model based on population analysis. Chemom Intell Lab Syst 170:77–83

    Article  CAS  Google Scholar 

  48. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29

    Article  CAS  Google Scholar 

Download references

Funding

PD thanks Indian Council of Medical Research, New Delhi, for awarding with a Senior Research Fellowship. JR received financial assistance from the Department of Atomic Energy—Board of Research in Nuclear Sciences (DAE-BRNS) (ref. 36(3)/14/08/2017-BRNS). KR thanks DAE-BRNS for a major research project (ref. 36(3)/14/08/2017-BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary I

contains structures and experimental A2AR binding affinity [pA2AR(BA)] and A2AR selectivity values. (DOCX 1269 kb)

Supplementary II

contains descriptor values and AD information of all compounds for different models. (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, P., Roy, J., Bhattacharyya, D. et al. Chemometric modeling of PET imaging agents for diagnosis of Parkinson’s disease: a QSAR approach. Struct Chem 31, 1969–1981 (2020). https://doi.org/10.1007/s11224-020-01560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01560-6

Keywords

Navigation