Skip to main content
Log in

Theoretical study of hydrogen bonds and electronic properties in hexagonal arrangements composed of self-assembled DNA analogues

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Aminopyrimidine, triaminopyrimidine, and cyanuric acid as artificial bases can be used to design and prepare multi-stranded DNA structures. In this manuscript, we theoretically investigate the stability of hydrogen-bonded hexagonal structures arising from the self-assembly of aminopyrimidine and cyanuric acid, as well as triaminopyrimidine and cyanuric acid in gas phase and in water. The influence of hydrogen bonds on the stability of hexagonal arrangements is examined by atoms in molecules and natural bond orbital analyses. Moreover, the mutual effects of hydrogen bonds on each other are also evaluated in the hexagonal structures using cooperative energy. Whereas the self-assembly of the hydrogen-bonded hexagonal arrangements may be considered to form new nanostructures, metal sensors, and ion channels, some electronic properties such as band gap, first ionization energy, electron affinity, electronegativity, electronic chemical potential, electrophilicity index, global chemical hardness, and chemical softness are theoretically estimated at M06-2X/6-311++G(d,p) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Fonseca Guerra C, Bickelhaupt FM, Snijders JG, Baerends EJ (1999) The nature of the hydrogen bond in DNA base pairs: the role of charge transfer and resonance assistance. Chem Eur J 5:3581–3594

    Article  Google Scholar 

  2. Fonseca Guerra C, Bickelhaupt FM, Snijders JG, Baerends EJ (2000) Hydrogen bonding in DNA base pairs: reconciliation of theory and experiment. J Am Chem Soc 122:4117–4128

    Article  CAS  Google Scholar 

  3. Washington MT, Helquist SA, Kool ET, Prakash L, Prakash S (2003) Requirement of Watson-Crick hydrogen bonding for DNA synthesis by yeast DNA polymerase η. Mol Cell Biol 23:5107–5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poater J, Swart M, Bickelhaupt FM, Fonseca Guerra C (2014) B-DNA structure and stability: the role of hydrogen bonding, π–π stacking interactions, twist-angle, and solvation. Org Biomol Chem 12:4691–4700

    Article  CAS  PubMed  Google Scholar 

  5. Szatyłowicz H, Sadlej-Sosnowska N (2010) Characterizing the strength of individual hydrogen bonds in DNA base pairs. J Chem Inf. Model 50:2151–2161

    Article  PubMed  CAS  Google Scholar 

  6. Gatti C, Macetti G, Boyd RJ, Matta CF (2018) An electron density source-function study of DNA base pairs in their neutral and ionized ground states. J Comput Chem 39:1112–1128

    Article  CAS  PubMed  Google Scholar 

  7. Poater J, Swart M, Fonseca Guerra C, Bickelhaupt FM (2011) Selectivity in DNA replication. Interplay of steric shape, hydrogen bonds, π-stacking and solvent effects. Chem Commun 47:7326–7328

    Article  CAS  Google Scholar 

  8. Nikolaienko TY, Bulavin LA, Hovorun DM (2012) Bridging QTAIM with vibrational spectroscopy: The energy of intramolecular hydrogen bonds in DNA-related biomolecules. Phys Chem Chem Phys 14:7441–7447

    Article  CAS  PubMed  Google Scholar 

  9. Masoodi HR, Bagheri S, Anvari Z (2019) DFT study of adenine–cytosine mismatch in quaternary systems involving DNA bases. Struct Chem 30:1023–1031

    Article  CAS  Google Scholar 

  10. Masoodi HR, Bagheri S, Abareghi M (2016) The effects of tautomerization and protonation on the adenine–cytosine mismatches: a density functional theory study. J Biomol Struct Dyn 34:1143–1155

    Article  CAS  PubMed  Google Scholar 

  11. Wu Z, Ono A, Kainosho M, Bax A (2001) Measurement of 1H3′-31P dipolar couplings in a DNA oligonucleotide by constant-time NOESY difference spectroscopy. J Biomol NMR 19:361–365

    Article  CAS  PubMed  Google Scholar 

  12. Khakshoor O, Wheeler SE, Houk KN, Kool ET (2012) Measurement and theory of hydrogen bonding contribution to isosteric DNA base pairs. J Am Chem Soc 134:3154–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brovarets’OO YYP, Hovorun DM (2015) The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. J Biomol Struct Dyn 33:1624–1652

    Article  CAS  Google Scholar 

  14. Ziółkowski M, Grabowski SJ, Leszczynski J (2006) Cooperativity in hydrogen-bonded interactions: Ab initio and “atoms in molecules” analyses. J. Phys. Chem. A 110:6514–6521

    Article  PubMed  CAS  Google Scholar 

  15. Brovarets’ OO, Tsiupa KS, Hovorun DM (2018) Novel pathway for mutagenic tautomerization of classical А∙Т DNA base pairs via sequential proton transfer through quasiorthogonal transition states: A QM/QTAIM investigation. PLoS ONE 13(6): e0199044.

  16. Dannenberg JJ, Tomasz M (2000) Hydrogen-bond acid/base catalysis: a density functional theory study of protonated guanine-(substituted) cytosine base pairs as models for nucleophilic attack on mitomycin in DNA. J Am Chem Soc 122:2062–2068

    Article  CAS  Google Scholar 

  17. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hansel-Hertsch R, Di Antonio M, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18:279–284

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Liu X, Willner I (2015) DNA switches: from principles to applications. Angew Chem Int Ed 54:1098–1129

    Article  CAS  Google Scholar 

  20. Hu Y, Cecconello A, Idili A, Ricci F, Willner I (2017) Triplex DNA nanostructures: from basic properties to applications. Angew Chem Int Ed 56:15210–15233

    Article  CAS  Google Scholar 

  21. Xu J, Raymond KN (2006) Structurally characterized quadruple-stranded bisbidentate helicates. Angew Chem Int Ed 45:6480–6485

    Article  CAS  Google Scholar 

  22. Gan Q, Bao C, Kauffmann B, Grélard A, Xiang J, Liu S, Huc I, Jiang H (2008) Quadruple and double helices of 8-fluoroquinoline oligoamides. Angew Chem Int Ed 47:1715–1718

    Article  CAS  Google Scholar 

  23. Guichard G, Huc I (2011) Synthetic foldamers. Chem Commun 47:5933–5941

    Article  CAS  Google Scholar 

  24. Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) A field guide to foldamers. Chem Rev 101:3893–4012

    Article  CAS  PubMed  Google Scholar 

  25. Yashima E, Maeda K, Iida H, Furusho Y, Nagai K (2009) Helical polymers: synthesis, structures, and functions. Chem Rev 109:6102–6211

    Article  CAS  PubMed  Google Scholar 

  26. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K (2016) Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev 116:13752–13990

    Article  CAS  PubMed  Google Scholar 

  27. Shin D, Tor Y (2011) A bifacial nucleoside as a surrogate for both T and A in duplex DNA. J Am Chem Soc 133:6926–6929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan MY, Hang W, Zhao XJ, Zhao H, Deng PC, Xing ZH, Qing Y, He Y (2011) Janus-type AT nucleosides: synthesis, solid and solution state structures. Org Biomol Chem 9:5692–5702

    Article  CAS  PubMed  Google Scholar 

  29. Largy E, Liu W, Hasan A, Perrin DM (2013) Base-pairing behavior of a carbocyclic Janus-AT nucleoside analogue capable of recognizing A and T within a DNA duplex. ChemBioChem 14:2199–2208

    Article  CAS  PubMed  Google Scholar 

  30. Zeng Y, Pratumyot Y, Piao X, Bong D (2012) Discrete assembly of synthetic peptide-DNA triplex structures from polyvalent melamine-thymine bifacial recognition. J Am Chem Soc 134:832–835

    Article  CAS  PubMed  Google Scholar 

  31. Piao X, Xia X, Bong D (2013) Bifacial peptide nucleic acid directs cooperative folding and assembly of binary, ternary, and quaternary DNA complexes. Biochemistry 52:6313–6323

    Article  CAS  PubMed  Google Scholar 

  32. Amann N, Huber R, Wagenknecht HA (2004) Phenanthridinium as an artificial base and charge donor in DNA. Angew Chem Int Ed 43:1845–1847

    Article  CAS  Google Scholar 

  33. Kashida H, Hattori Y, Tazoe K, Inoue T, Nishikawa K, Ishii K, Uchiyama S, Yamashita H, Abe M, Kamiya Y, Asanuma H (2018) Bifacial nucleobases for hexaplex formation in aqueous solution. J Am Chem Soc 140:8456–8462

    Article  CAS  PubMed  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 (revision A.02) Gaussian, Inc., Wallingford.

  35. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  36. Dolney DM, Hawkins GD, Winget P, Liotard DA, Cramer CJ, Truhlar DG (2000) A universal solvation model based on the conductor-like screening model. J Comput Chem 21:340–366

    Article  CAS  Google Scholar 

  37. Mennucci B (2012) Polarizable continuum model. Wiley Interdiscip Rev Comput Mol Sci 2:386–404

    Article  CAS  Google Scholar 

  38. Kannappan V, Suganthi S, Sathyanarayanamoorthi V (2014) Polarizable continuum model solvation analysis of certain 5-substituted isoquinoline derivatives. J Mol Liq 199:123–127

    Article  CAS  Google Scholar 

  39. Romero EE, Hernandez FE (2018) Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine–cytosine and adenine–thymine base pairs: a polarizable continuum model study. Phys Chem Chem Phys 20:1198–1209

    Article  CAS  PubMed  Google Scholar 

  40. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063

    Article  CAS  PubMed  Google Scholar 

  41. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117:12590–12600

    Article  CAS  PubMed  Google Scholar 

  42. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  43. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  44. Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford

    Google Scholar 

  45. Biegler König F, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23:1489–1494

    Article  PubMed  CAS  Google Scholar 

  46. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  47. Brovarets’ OO, Hovorun DM (2014) Can tautomerization of the A·T Watson–Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. J Biomol Struct Dyn 32:127–154

    Article  CAS  Google Scholar 

  48. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  49. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1995) NBO Version 3.1. Department of Chemistry, University of California-Irvine, Irvine, CA

  50. Koopmans TA (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104–113

    Article  Google Scholar 

  51. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  52. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  53. Parr RG, Szentpàly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  54. Chęcińska L, Grabowski SJ (2006) F–H⋯F–C hydrogen bonds – The influence of hybridization of carbon atom connected with F-acceptor on their properties. Chem Phys 327:202–208

    Article  CAS  Google Scholar 

  55. Grabowski SJ (2006) Hydrogen Bonding – New Insights. Springer, Netherlands

    Book  Google Scholar 

  56. Dashnau JL, Sharp KA, Vanderkooi JM (2005) Carbohydrate intramolecular hydrogen bonding cooperativity and its effect on water structure. J. Phys. Chem. B 109:24152–24159

    Article  CAS  PubMed  Google Scholar 

  57. Nochebuena J, Cuautli C, Ireta J (2017) Origin of cooperativity in hydrogen bonding. Phys Chem Chem Phys 19:15256–15263

    Article  CAS  PubMed  Google Scholar 

  58. Asensio A, Kobko N, Dannenberg JJ (2003) Cooperative hydrogen-bonding in adenine−thymine and guanine−cytosine base pairs. Density functional theory and Møller−Plesset molecular orbital study. J Phys Chem A 107:6441–6443

    Article  CAS  Google Scholar 

  59. Shi Y, Jiang W, Zhang Z, Wang Z (2017) Cooperative vibrational properties of hydrogen bonds in Watson–Crick DNA base pairs. New J Chem 41:12104–12109

    Article  CAS  Google Scholar 

  60. Masoodi HR, Ebrahimi A, Bagheri S (2015) The influence of cations and anions on some structural and electronic properties of single-walled zigzag boron nitride and aluminum nitride nanotubes: a computational study. Struct Chem 26:1013–1024

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotoodeh Bagheri.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, S. Theoretical study of hydrogen bonds and electronic properties in hexagonal arrangements composed of self-assembled DNA analogues. Struct Chem 31, 2075–2085 (2020). https://doi.org/10.1007/s11224-020-01545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01545-5

Keywords

Navigation