Skip to main content

Supramolecular Assemblies Based on σ-hole Interactions

  • Chapter
  • First Online:
Supramolecular Assemblies Based on Electrostatic Interactions

Abstract

Elements belonging to Groups 14–17 and Periods 3–6 frequently act as Lewis acids which are able to establish directional noncovalent interactions (NCI) with a variety of Lewis bases (lone pair donors), π-systems (aromatic rings, triple and double bonds) and non-nucleophilic anions (BF4, PF6, ClO4, etc.). These promising NCIs are named in general as σ-hole interactions that are subdivided as tetrel bonds for elements belonging to group 14, pnictogen bonding for group 15, chalcogen bonding for group 16, and halogen bonding for group 17. In general, σ-hole interactions offer differentiating features when moving down in the same group (larger and more positive σ-holes) or moving left in the same row (number of available σ-holes and directionality) of the periodic table. This chapter shows that Molecular Electrostatic Potential (MEP) surface calculation is a powerful tool to explain the solid-state architecture of many X-ray structures. This is exemplified by using many examples retrieved from the Cambridge Structural Database (CSD), especially focused on σ-hole interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frontera A, Bauzá A (2021) On the importance of σ–hole interactions in crystal structures. Crystals 11:1205. https://doi.org/10.3390/cryst11101205

  2. Daolio A, Scilabra P, Terraneo G, Resnati GC (2020) (sp3) atoms as tetrel bond donors: a crystallographic survey. Coord Chem Rev 413:213265. https://doi.org/10.1016/j.ccr.2020.213265

  3. von der Heiden D, Vanderkooy A, Erdélyi M (2020) Halogen bonding in solution: NMR spectroscopic approaches. Coord Chem Rev 407:213147. https://doi.org/10.1016/j.ccr.2019.213147

  4. Gill H, Gokel MR, McKeever M, Negin, S Patel MB, Yin S, Gokel GW (2020) Supramolecular pore formation as an antimicrobial strategy. Coord Chem Rev 412:213264. https://doi.org/10.1016/j.ccr.2020.213264

  5. Xu Y, Szell PMJ, Kumar V, Bryce DL (2020) Solid-state NMR spectroscopy for the analysis of element-based non-covalent interactions. Coord Chem Rev 411:213237. https://doi.org/10.1016/j.ccr.2020.213237

  6. Wang W, Zhang Y, Jin WJ (2020) Halogen bonding in room-temperature phosphorescent materials. Coord Chem Rev 404:213107. https://doi.org/10.1016/j.ccr.2019.213107

  7. Grabowski SJ (2020) Triel bond and coordination of triel centres – Comparison with hydrogen bond interaction. Coord Chem Rev 407:213171. https://doi.org/10.1016/j.ccr.2019.213171

  8. Fromm KM (2020) Chemistry of alkaline earth metals: It is not all ionic and definitely not boring! Coord Chem Rev 408:213192. https://doi.org/10.1016/j.ccr.2020.213193

  9. Fourmigué M, Dhaka A (2020) Chalcogen bonding in crystalline diselenides and selenocyanates: from molecules of pharmaceutical interest to conducting materials. Coord Chem Rev 403:213084. https://doi.org/10.1016/j.ccr.2019.213084

  10. Scheiner S, Michalczyk M, Zierkiewicz W (2020) Coordination of anions by noncovalently bonded σ-hole ligands. Coord Chem Rev 405:213136. https://doi.org/10.1016/j.ccr.2019.213136

  11. Taylor MS (2020) Anion recognition based on halogen, chalcogen, pnictogen and tetrel bonding. Coord Chem Rev 413:213270. https://doi.org/10.1016/j.ccr.2020.213270

  12. Bauzá A, Frontera A (2020) σ/π-Hole noble gas bonding interactions: Insights from theory and experiment. Coord Chem Rev 404:213112. https://doi.org/10.1016/j.ccr.2019.213112

  13. Biot N, Bonifazi D (2020) Chalcogen-bond driven molecular recognition at work. Coord Chem Rev 413:213243. https://doi.org/10.1016/j.ccr.2020.213243

  14. Cavallo G, Metrangolo P, Pilati T, Resnati G, Terraneo G (2014) Naming interactions from the electrophilic site. Cryst Growth Des 14:2697–2702. https://doi.org/10.1021/cg5001717

  15. Terraneo G, Resnati G (2017) Bonding matters. Cryst Growth Des 17:1439–1440. https://doi.org/10.1021/acs.cgd.7b00309

    Article  CAS  Google Scholar 

  16. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl Chem 85:1711–1713. https://doi.org/10.1351/PAC-REC-12-05-10

    Article  CAS  Google Scholar 

  17. Aakeroy CB, Bryce DL, Desiraju GR, Frontera A, Legon AC, Nicotra F, Rissanen K, Scheiner S, Terraneo G, Metrangolo P, Resnati G (2019) Definition of the chalcogen bond (IUPAC recommendations 2019). Pure Appl Chem 91:1889–1892. https://doi.org/10.1515/pac-2018-0713

    Article  CAS  Google Scholar 

  18. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034–6038. https://doi.org/10.1002/chem.201002146

    Article  CAS  PubMed  Google Scholar 

  19. Girolami GS (2009) Origin of the terms pnictogen and pnictide. J Chem Educ 86:1200–1201. https://doi.org/10.1021/ed086p1200

    Article  CAS  Google Scholar 

  20. Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel bonding interaction: rediscovered supramolecular force? Angew Chem Int Ed 52:12317–12321. https://doi.org/10.1002/anie.201306501

    Article  CAS  Google Scholar 

  21. Bauza A, Alkorta I, Elguero J, Mooibroek TJ, Frontera A (2020) Spodium bonds: noncovalent interactions involving group 12 elements. Angew Chem Int Ed 59:17482–17487. https://doi.org/10.1002/anie.202007814

    Article  CAS  Google Scholar 

  22. Alkorta I, Elguero J, Frontera A (2020) 17. Not only hydrogen bonds: other noncovalent interactions. Crystals 10 180. https://doi.org/10.3390/cryst10030180

  23. Gomila RM, Bauza A, Mooibroek TJ, Frontera A (2021) Spodium bonding in five coordinated Zn(II): a new player in crystal engineering? CrystEngComm 23:3084–3093. https://doi.org/10.1039/D1CE00221J

  24. Daolio A, Pizzi A, Terraneo G, Ursini M, Frontera A, Resnati G (2021) Anion⋯anion coinage bonds: the case of tetrachloridoaurate. Angew Chem Int Ed. 60:14385–14389. https://doi.org/10.1002/anie.202104592

    Article  Google Scholar 

  25. Frontera A, Bauzà A (2018) Regium–π bonds: an unexplored link between noble metal nanoparticles and aromatic surfaces. Chem Eur J 24:7228–7234. https://doi.org/10.1002/chem.201800820

    Article  CAS  PubMed  Google Scholar 

  26. Daolio A, Pizzi, A Terraneo, G, Frontera A, Resnati, G (2021) σ-holes allow for attractive anion⋯anion interactions involving perrhenate, permanganate, and pertechnetate anions. ChemPhysChem 22:2281–2285. https://doi.org/10.1002/cphc.202100681

  27. Daolio A, Pizzi A, Calabrese M, Terraneo G, Bordignon S, Frontera A, Resnati G (2021) Molecular electrostatic potential and noncovalent interactions in derivatives of group 8 elements. Angew Chem Int Ed 60:20723–20727. https://doi.org/10.1002/anie.202107978

    Article  CAS  Google Scholar 

  28. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311. https://doi.org/10.1007/s00894-006-0154-7

    Article  CAS  PubMed  Google Scholar 

  29. Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J 7:2511–2519. https://doi.org/10.1002/1521-3765(20010618)7:12%3c2511::AID-CHEM25110%3e3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  30. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395. https://doi.org/10.1021/ar0400995

    Article  CAS  PubMed  Google Scholar 

  31. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114–6127. https://doi.org/10.1002/anie.200800128

    Article  CAS  Google Scholar 

  32. Metrangolo P, Resnati G (eds) (2008) Halogen bonding: fundamentals and applications. Springer, Berlin

    Google Scholar 

  33. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757. https://doi.org/10.1039/C004189K

    Article  CAS  PubMed  Google Scholar 

  34. Erdélyi M (2012) Halogen bonding in solution. Chem Soc Rev 41:3547–3557. https://doi.org/10.1039/C2CS15292D

    Article  PubMed  Google Scholar 

  35. Beale TM, Chudzinski MG, Sarwar MG, Taylor MS (2013) Halogen bonding in solution: thermodynamics and applications. Chem Soc Rev 42:1667–1680. https://doi.org/10.1039/C2CS35213C

    Article  CAS  PubMed  Google Scholar 

  36. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189. https://doi.org/10.1039/C3CP00054K

    Article  CAS  PubMed  Google Scholar 

  37. Metrangolo P, Resnati G (eds) (2015) Halogen bonding II Impact on materials chemistry and life sciences. Springer International Publishing AG, Heidelberg

    Google Scholar 

  38. Gilday LC, Robinson SW, Barendt TA, Langton, MJ Mullaney BR, Beer PD (2015) Halogen bonding in supramolecular chemistry. Chem Rev 115:7118–7195. https://doi.org/10.1021/cr500674c

  39. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601. https://doi.org/10.1021/acs.chemrev.5b00484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Pombeiro AJL (2017) Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans 46:10121–10138. https://doi.org/10.1039/C7DT01685A

  41. Gleiter R, Haberhauer G, Werz DB, Rominger F, Bleiholder C (2018) From noncovalent chalcogen–chalcogen interactions to supramolecular aggregates: experiments and calculations. Chem Rev 118:2010–2041. https://doi.org/10.1021/acs.chemrev.7b00449

    Article  CAS  PubMed  Google Scholar 

  42. Vogel L, Wonner P, Huber SM (2019) Chalcogen bonding: an overview. Angew Chem Int Ed 58:1880–1891. https://doi.org/10.1002/anie.201809432

  43. Scheiner S (2013) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280–288. https://doi.org/10.1021/ar3001316

    Article  CAS  PubMed  Google Scholar 

  44. del Bene JE, Alkorta I, Elguero J (2015) The pnicogen bond in review: structures, binding energies, bonding properties, and spin–spin coupling constants of complexes stabilized by pnicogen bonds. In: Scheiner S (ed) Noncovalent forces. Springer, Heidelberg, pp 191–264. https://doi.org/10.1007/978-3-319-14163-3_8

  45. Brammer L (2017) Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: origins, current status and discussion. Faraday Discuss 203:485–507. https://doi.org/10.1039/C7FD00199A

    Article  CAS  PubMed  Google Scholar 

  46. Politzer P, Murray JS, Lane P (2007) σ-Hole bonding and hydrogen bonding: competitive interactions. Int J Quantum Chem 107:3046–3052. https://doi.org/10.1002/qua.21419

    Article  CAS  Google Scholar 

  47. Zhu S, Xing C, Xu, W Jin G, Li Z (2004) Halogen bonding and hydrogen bonding coexist in driving self-assembly process. Cryst Growth Des 4:53–56. https://doi.org/10.1021/cg0300275

  48. Priimagi A, Cavallo G, Forni A, Gorynsztejn-Leben M, Kaivola M, Metrangolo P, Milani R, Shishido A, Pilati T, Resnati G, Terraneo G (2012) Halogen bonding versus hydrogen bonding in driving self-assembly and performance of light-responsive supramolecular polymers. Adv Funct Mater 22:2572–2579. https://doi.org/10.1002/adfm.201200135

    Article  CAS  Google Scholar 

  49. Mukherjee A, Tothadi S, Desiraju GR (2014) Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc Chem Res 47:2514–2524. https://doi.org/10.1021/ar5001555

    Article  CAS  PubMed  Google Scholar 

  50. Scheiner S (2019) Forty years of progress in the study of the hydrogen bond. Struct Chem 30:1119–1128. https://doi.org/10.1007/s11224-019-01357-2

    Article  CAS  Google Scholar 

  51. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed 39:1782–1786. https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1782::AID-ANIE1782>3.0.CO;2-5

  52. Pascoe DJ, Ling KB, Cockroft SL (2017) The origin of chalcogen-bonding interactions. J Am Chem Soc 139:15160–15167. https://doi.org/10.1021/jacs.7b08511

    Article  CAS  PubMed  Google Scholar 

  53. Bora PL, Novák M, Novotný J, Foroutan-Nejad C, Marek R (2017) Supramolecular covalence in bifurcated chalcogen bonding. Chem Eur J 23:7315–7323. https://doi.org/10.1002/chem.201700179

    Article  CAS  PubMed  Google Scholar 

  54. Bhandary S, Sirohiwal A, Kadu R, Kumar S, Chopra D (2018) Dispersion stabilized Se/Te⋯π double chalcogen bonding synthons in in situ cryocrystallized divalent organochalcogen liquids. Cryst Growth Des 18:3734–3739. https://doi.org/10.1021/acs.cgd.8b00585

    Article  CAS  Google Scholar 

  55. Ams MR, Trapp N, Schwab A, Milić JV, Diederich F (2019) Chalcogen bonding “2S–2N Squares” versus competing interactions: exploring the recognition properties of sulfur. Chem Eur J 25:323–333. https://doi.org/10.1002/chem.201804261

  56. Politzer P, Murray JS, Concha MC (2008) σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14:659–665. https://doi.org/10.1007/s00894-008-0280-5

    Article  CAS  PubMed  Google Scholar 

  57. Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) The nature of the supramolecular association of 1, 2, 5-chalcogenadiazoles. J Am Chem Soc 127:3184–3190. https://doi.org/10.1021/ja044005y

    Article  CAS  PubMed  Google Scholar 

  58. De Vleeschouwer F, Denayer M, Pinter B, Geerlings P, De Proft F (2018) Characterization of chalcogen bonding interactions via an in-depth conceptual quantum chemical analysis. J Comput Chem 39:557–572. https://doi.org/10.1002/jcc.25099

    Article  CAS  PubMed  Google Scholar 

  59. Bleiholder C, Gleiter R, Werz DB, Köppel H (2007) Theoretical investigations on heteronuclear chalcogen−chalcogen interactions: on the nature of weak bonds between chalcogen centers. Inorg Chem 46:2249–2260. https://doi.org/10.1021/ic062110y

    Article  CAS  PubMed  Google Scholar 

  60. Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) Theoretical investigations on chalcogen−chalcogen interactions: what makes these nonbonded interactions bonding? J Am Chem Soc 128:2666–2674. https://doi.org/10.1021/ja056827g

    Article  CAS  PubMed  Google Scholar 

  61. Politzer P, Murray JS (2019) An overview of strengths and directionalities of noncovalent interactions: σ-holes and π-holes. Curr Comput-Aided Drug Des 9:165. https://doi.org/10.3390/cryst9030165

    Article  CAS  Google Scholar 

  62. Politzer P, Murray JS, Clark T, Resnati G (2017) The σ-hole revisited. Phys Chem Chem Phys 19:32166–32178. https://doi.org/10.1039/C7CP06793C

    Article  CAS  PubMed  Google Scholar 

  63. Scheiner S (2018) Steric crowding in tetrel bonds. J Phys Chem A 122:2550–2562. https://doi.org/10.1021/acs.jpca.7b12357

    Article  CAS  PubMed  Google Scholar 

  64. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: σ-hole bonding. Aust J Chem 63:1598–1607. https://doi.org/10.1071/CH10259

  65. Clark T (2013) σ-holes. Wiley Interdiscip Rev Comput Mol Sci 3:13–20. https://doi.org/10.1002/wcms.1113

    Article  CAS  Google Scholar 

  66. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I) J Mol Model 19:2739–2746. https://doi.org/10.1007/s00894-012-1571-4

  67. Grabowski SJ (2014) Tetrel bond–σ-hole bond as a preliminary stage of the SN2 reaction. Phys Chem Chem Phys 16:1824–1834. https://doi.org/10.1039/C3CP53369G

  68. Thomas SP, Pavan MS, Row TNG (2014) Experimental evidence for “carbon bonding” in the solid state from charge density analysis. Chem Commun 50:49–51. https://doi.org/10.1039/C3CC47226D

    Article  CAS  Google Scholar 

  69. Bauzá A, Mooibroek TJ, Frontera A (2014) Small cycloalkane (CN)2C–C(CN)2 structures are highly directional non-covalent carbon-bond donors. Chem Eur J 20:10245–10248. https://doi.org/10.1002/chem.201403680

  70. Bauzá A, Mooibroek TJ, Frontera A (2016) 1,1,2,2-tetracyanocyclopropane (TCCP) as supramolecular synthon. Phys Chem Chem Phys 18:1693–1698. https://doi.org/10.1039/C5CP06350G

    Article  CAS  PubMed  Google Scholar 

  71. Escudero-Adán EC, Bauzá A, Frontera A, Ballester P (2015) Nature of noncovalent carbon-bonding interactions derived from experimental charge-density analysis. ChemPhysChem 16:2530–2533. https://doi.org/10.1002/cphc.201500437

    Article  CAS  PubMed  Google Scholar 

  72. Roeleveld JJ, Lekanne Deprez SJ, Verhoofstad A, Frontera A, van der Vlugt JI, Mooibroek TJ (2020) Engineering crystals using sp3-C centred tetrel bonding interactions. Chem Eur J 26:10126–10132. https://doi.org/10.1002/chem.202002613

    Article  CAS  PubMed  Google Scholar 

  73. Mani D, Arunan E (2013) The X–C⋯Y (X= O/F, Y= O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions. Phys Chem Chem Phys 15:14377–14383. https://doi.org/10.1039/C3CP51658J

  74. Bauza A (2016) Frontera A RCH3⋯O interactions in biological systems: are they trifurcated H-bonds or noncovalent carbon bonds? Curr Comput-Aided Drug Des 6:26. https://doi.org/10.3390/cryst6030026

    Article  CAS  Google Scholar 

  75. Morgunov RB, Mushenok FB, Aldoshin SM, Sanina NA, Yur’eva EA, Shilov GV, Tkachev VV (2009) Thermally-induced paramagnetism of spiropyrane iodides. New J Chem 33:1374. https://doi.org/10.1039/b822567b

    Article  CAS  Google Scholar 

  76. Haussuhl E, Schreuer J (2016) Crystal structure and elastic properties of betaine fumarate and of betaine maleate, two isomers of ((CH3)3NCH2COOH. OOC(CH)2COOH. Z Kristallogr 216:616–622. https://doi.org/10.1524/zkri.216.12.616.22492

  77. Huta OM, Patsaj IO, Konitz A, Meszko J, Blazejowski J (2002) 9-Cyano-10-methylacridinium hydrogen dinitrate. Acta Cryst C58:o295–o297

    CAS  Google Scholar 

  78. Alcock NW, Harrison WD, Howes C (1984) Secondary bonding. Part 13. Aryl-tellurium(IV) and -iodine(III) acetates and trifluoroacetates. The crystal and molecular structures of bis-(p-methoxyphenyl)tellurium diacetate, µ-oxo-bis[diphenyltrifluoroacetoxytellurium] hydrate, and [bis(trifluoroacetoxy)iodo]benzene. J Chem Soc, Dalton Trans 1709. https://doi.org/10.1039/dt9840001709

  79. Witt JR, Britton D, Mahon C (1972) The crystal structures of BrC(CN)3, ClC(CN)3, and CH3C(CN)3. Acta Cryst B28:950. https://doi.org/10.1107/S0567740872003450

    Article  Google Scholar 

  80. Franconetti A, Quiñonero D, Frontera, A, Resnati G (2019) Unexpected chalcogen bonds in tetravalent sulfur compounds. Phys Chem Chem Phys 21:11313–11319. https://doi.org/10.1039/C9CP01033E

  81. Patia S, Rappoport Z (eds) (1995) Chemistry of Functional Groups: the chemistry of organic germanium, tin and lead compounds, vol 19. Wiley

    Google Scholar 

  82. Parr J (2004) Comprehensive coordination chemistry II. In: McCleverty JA, Meye TJ (eds), vol 3. Elsevier Pergamon, Oxford, p 545

    Google Scholar 

  83. Sato T (1995) Comprehensive organometallic chemistry II. In: Abel EW, Stone FGA, Wilkinson G (eds), vol 11. Pergamon Press, Oxford, p 389

    Google Scholar 

  84. Pinhey JT (1995) Comprehensive organometallic chemistry II. In: Abel EW, Stone FGA, Wilkinson G (eds), vol 11. Pergamon Press, Oxford, p 461

    Google Scholar 

  85. Greenberg A, Wu G (1990) Structural relationships in silatrane molecules. Struct Chem 1:79–85. https://doi.org/10.1007/BF00675787

    Article  CAS  Google Scholar 

  86. Hencsei P (1991) Evaluation of silatrane structures by correlation relationships. Struct Chem 2:21–26. https://doi.org/10.1007/BF00673485

    Article  Google Scholar 

  87. Voronkov MG, Barishok VP, Petukhov LP, Rahklin RG, Pestunovich VA (1988) 1-Halosilatranes. J Organomet Chem 358:39–55. https://doi.org/10.1016/0022-328X(88)87069-4

    Article  CAS  Google Scholar 

  88. Lukevics E, Dimens V, Pokrovska N, Zicmane I, Popelis J, Kemme A (1999) Addition of nitrile oxides to 2,3-dihydrofurylsilanes. Crystal and molecular structure of tetrahydrofuro-[2,3-d]-isoxazolylsilanes. J Organomet Chem 586:200–207. https://doi.org/10.1016/S0022-328X(99)00266-1

  89. Corriu RJP (1990) Hypervalent species of silicon: structure and reactivity. J Organomet Chem 400:81–106. https://doi.org/10.1016/0022-328X(90)83007-7

    Article  CAS  Google Scholar 

  90. Shen Q, Hilderbrandt RL (1980) The structure of methyl silatrane (1-methyl-2,8,9-trioxa-5-aza-1-silabicyclo (3.3.3) undecane) as determined by gas phase electron diffraction. J Mol Struct 64:257–262. https://doi.org/10.1016/0022-2860(80)80136-0

  91. Förgics G, Kolonits M, Hargittai I (1990) The gas-phase molecular structure of 1-fluorosilatrane from electron diffraction. Struct Chem 1:245–250. https://doi.org/10.1007/BF00674268

    Article  Google Scholar 

  92. Eujen R, Petrauskas E, Roth A, Brauer DJ (2000) The structures of 1-chlorogermatrane and of 1-fluorogermatrane, revisited. J Organomet Chem 613:86–92. https://doi.org/10.1016/S0022-328X(00)00514-3

    Article  CAS  Google Scholar 

  93. Lukevics E, Ignatovich L, Beliakov S (1999) Synthesis and molecular structure of phenyl and tolylgermatranes. J Organomet Chem 588:222–230. https://doi.org/10.1016/S0022-328X(99)00378-2

    Article  CAS  Google Scholar 

  94. Livant P, Northcott J, Webb TR (2001) Structure of an oxo-bridged germatrane dimer. J Organomet Chem 620:133–138. https://doi.org/10.1016/S0022-328X(00)00807-X

    Article  CAS  Google Scholar 

  95. Karlov SS, Shutov PL, Churakov AV, Lorberth J, Zaitseva GS (2001) New approach to 1-(phenylethynyl)germatranes and 1-(phenylethynyl)-3,7,10-trimethylgermatrane. Reactions of 1-(phenylethynyl)germatrane with N-bromosuccinimide and bromine. J Organomet Chem 627:1–5. https://doi.org/10.1016/S0022-328X(01)00708-2

  96. Alkorta I, Rozas I (2001) Elguero J Molecular complexes between silicon derivatives and electron-rich groups. J Phys Chem A 105:743–749. https://doi.org/10.1021/jp002808b

    Article  CAS  Google Scholar 

  97. Alkorta I, Elguero J, Fruchier A, Macquarrie DJ, Virgili A (2001) Aminopropylsilanes versus silatranes: an experimental and theoretical study. J Organomet Chem 625:148–153. https://doi.org/10.1016/S0022-328X(00)00808-1

    Article  CAS  Google Scholar 

  98. Liu M, Li Q, Scheiner S (2017) Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF3 and furanTF3 (T = C, Si, and Ge) with NH3. Phys Chem Chem Phys 19:5550–5559. https://doi.org/10.1039/C6CP07531B

    Article  CAS  PubMed  Google Scholar 

  99. Kalikhman I, Girshberg O, Lameyer L, Stalke D, Kost D (2001) Tautomeric equilibrium between penta-and hexacoordinate silicon chelates. A chloride bridge between two pentacoordinate silicons. J Am Chem Soc 123:4709–4716. https://doi.org/10.1021/ja004118r

  100. Taylor PG, Bassindale AR, El Aziz Y, Pourny M, Stevenson R, Hursthouse MB, Coles SJ (2012) Further studies of fluoride ion entrapment in octasilsesquioxane cages; X-ray crystal structure studies and factors that affect their formation. Dalton Trans 41:2048–2059. https://doi.org/10.1039/C1DT11340B

    Article  CAS  PubMed  Google Scholar 

  101. Bassindale AR, Pourny M, Taylor PG, Hursthouse MB, Light ME (2003) Fluoride-ion encapsulation within a Silsesquioxane cage. Angew Chem Int Ed 42:3488–3490. https://doi.org/10.1002/ange.200351249

    Article  CAS  Google Scholar 

  102. Dai X, Choi S-B, Braun CW, Vaidya P, Kilina S, Ugrinov A, Schulz DL, Boudjouk P (2011) Halide coordination of perhalocyclohexasilane Si6X12 (X = Cl or Br) cage. Inorg Chem 50:4047–4053. https://doi.org/10.1021/ic102535n

    Article  CAS  PubMed  Google Scholar 

  103. Tillmann J, Meyer-Wegner F, Nadj A, Becker-Baldus J, Sinke T, Bolte M, Holthausen MC, Wagner M, Lerner H-W (2012) Unexpected disproportionation of tetramethylethylenediamine-supported perchlorodisilane Cl3SiSiCl3. Inorg Chem 51:8599–8606. https://doi.org/10.1021/ic301283m

    Article  CAS  PubMed  Google Scholar 

  104. Dai X, Schulz D L, Braun CW, Ugrinov A, Boudjouk P (2010) “Inverse Sandwich” complexes of perhalogenated cyclohexasilane. Organometallics 29:2203–2205. https://doi.org/10.1021/om1000716

  105. Grabowski SJ (2017) Lewis acid properties of tetrel tetrafluorides—the coincidence of the σ-hole concept with the QTAIM approach. Curr Comput-Aided Drug Des 7:43. https://doi.org/10.3390/cryst7020043

    Article  CAS  Google Scholar 

  106. Scilabra P, Kumar V, Ursini M, Resnati G (2018) Close contacts involving germanium and tin in crystal structures: experimental evidence of tetrel bonds. J Mol Model 24:37. https://doi.org/10.1007/s00894-017-3573-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bauza A, Seth SK, Frontera A (2019) Tetrel bonding interactions at work: impact on tin and lead coordination compounds. Coord Chem Rev 384:107–125. https://doi.org/10.1016/j.ccr.2019.01.003

    Article  CAS  Google Scholar 

  108. Lukevics E, Arsenyan P, Belyakov S, Popelis J, Pudova O (1999) Cycloaddition reactions of nitrile oxides to silyl-and germyl-substituted thiophene-1,1-dioxides. Organometallics 18:3187–3193. https://doi.org/10.1021/om9902129

    Article  CAS  Google Scholar 

  109. Villaescusa LA, Lightfoot P, Morris RE (2002) Synthesis and structure of fluoride-containing GeO2 analogues of zeolite double four-ring building units. Chem Commun:2220–2221. https://doi.org/10.1039/B207374A

  110. Calogero S, Ganis P, Peruzzo V, Tagliavini G, Valle G (1981) X-ray and Mössbauer studies of tricyclohexyltin (IV) halides. The crystal structures of (cyclo-C6H11)3SnX (X = F, Br and I) J Organomet Chem 220:11–20. https://doi.org/10.1016/S0022-328X(00)83099-5

  111. Wang J-Q, Kuang D-Z, Zhang F-X, Feng Y-L, Xu Z-F (2004) CCDC 211279: Experimental crystal structure determination. https://doi.org/10.5517/cc72vgl

  112. Trujillo C, Sanchez-Sanz G, Alkorta I, Elguero J (2015) Halogen, chalcogen and pnictogen interactions in (XNO2) 2 homodimers (X = F, Cl, Br, I). New J Chem 39:6791–6802. https://doi.org/10.1039/C5NJ00600G

    Article  CAS  Google Scholar 

  113. Alkorta I, Elguero J, Grabowski SJ (2015) Pnicogen and hydrogen bonds: complexes between PH3X+ and PH2X systems. Phys Chem Chem Phys 17:3261–3272. https://doi.org/10.1039/C4CP04840G

    Article  CAS  PubMed  Google Scholar 

  114. Esrafili MD, Mohammadian-Sabet F, Baneshi MM (2015) The dual role of halogen, chalcogen, and pnictogen atoms as Lewis acid and base: triangular XBr:SHX:PH2X complexes (X = F, Cl, Br, CN, NC, OH, NH2, and OCH3). Int J Quantum Chem 115:1580–1586. https://doi.org/10.1002/qua.24987

    Article  CAS  Google Scholar 

  115. Adhikari U, Scheiner S (2012) Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. Chem Phys Lett 532:31–35. https://doi.org/10.1016/j.cplett.2012.02.064

    Article  CAS  Google Scholar 

  116. Bauzà A, Quinonero D, Deya PM, Frontera A (2013) Halogen bonding versus chalcogen and pnicogen bonding: a combined Cambridge structural database and theoretical study. CrystEngComm 15:3137–3144. https://doi.org/10.1039/C2CE26741A

    Article  Google Scholar 

  117. Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–2292. https://doi.org/10.1002/qua.21352

    Article  CAS  Google Scholar 

  118. Alkorta I, Sánchez-Sanz G, Elguero J (2014) Pnicogen bonds between X-PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases. J Phys Chem A 118:1527–1537. https://doi.org/10.1021/jp411623h

    Article  CAS  PubMed  Google Scholar 

  119. Shukla R, Chopra D (2016) Characterization of N⋯O non-covalent interactions involving σ-holes: “electrostatics” or “dispersion.” Phys Chem Chem Phys 18:29946–29954. https://doi.org/10.1039/C6CP05899J

    Article  CAS  PubMed  Google Scholar 

  120. Mokrai R, Jaie Barrett J, Apperley DC, Benkő Z, Heift D (2020) Tweaking the charge transfer: bonding analysis of Bismuth(III) complexes with a flexidentate phosphane ligand. Inorg Chem 59:8916–8924. https://doi.org/10.1021/acs.inorgchem.0c00734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sarkar S, Pavan MS, Guru Row TN (2015) Experimental validation of “pnicogen bonding” in nitrogen by charge density analysis. Phys Chem Chem Phys 17:2330–2334. https://doi.org/10.1039/C4CP04690K

    Article  CAS  PubMed  Google Scholar 

  122. Joshi PR, Ramanathan N, Sundararajan K, Sankaran K (2015) Evidence for phosphorus bonding in phosphorus trichloride–methanol adduct: a matrix isolation infrared and ab initio computational study. J Phys Chem A 119:3440–3451. https://doi.org/10.1021/jp511156d

    Article  CAS  PubMed  Google Scholar 

  123. Nelyubina YV, Korlyukov AA, Lyssenko KA (2015) Experimental charge density evidence for pnicogen bonding in a crystal of ammonium chloride. ChemPhysChem 16:676–681. https://doi.org/10.1002/cphc.201402673

    Article  CAS  PubMed  Google Scholar 

  124. Andrea Gini A, Paraja M, Galmés B, Besnard C, Poblador-Bahamonde AI, Sakai N, Frontera A, Matile S (2020) Pnictogen-bonding catalysis: brevetoxin-type polyether cyclizations. Chem Sci 11:7086–7091. https://doi.org/10.1039/D0SC02551H

    Article  PubMed  PubMed Central  Google Scholar 

  125. Scilabra P, Terraneo G, Resnati G (2017) Fluorinated elements of Group 15 as pnictogen bond donor sites. J Fluor Chem 203:62–67. https://doi.org/10.1016/j.jfluchem.2017.10.002

    Article  CAS  Google Scholar 

  126. Bauza A, Mooibroek TJ, Frontera A (2015) Directionality of π-holes in nitro compounds. Chem Commun 51:1491–1493. https://doi.org/10.1039/C4CC09132A

    Article  CAS  Google Scholar 

  127. Bauza A, Frontera A, Mooibroek TJ (2016) π-hole interactions involving nitro compounds: directionality of nitrate esters. Cryst Growth Des 16:5520–5524. https://doi.org/10.1021/acs.cgd.6b00989

    Article  CAS  Google Scholar 

  128. Bauza A, Sharko AV, Senchyk GA, Rusanov EB, Frontera A, Domasevitch KV (2017) π–hole interactions at work: crystal engineering with nitro-derivatives. CrystEngComm 19:1933–1937. https://doi.org/10.1039/C7CE00267J

  129. Bauza A, Frontera A, Mooibroek TJ (2019) Chem Eur J 25:13436–13443. Hazari A, Das LK, Kadam RM, Bauzá A, Frontera A, Ghosh A (2015) Dalton Trans 44:3862–3876. https://doi.org/10.1039/C7CE00267J

  130. Bauza A, Frontera A, Mooibroek TJ (2017) NO3 anions can act as Lewis acid in the solid state. Nat Commun 8:14522. https://doi.org/10.1038/ncomms14522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mooibroek TJ (2017) Coordinated nitrate anions can be directional π-hole donors in the solid state: a CSD study. CrystEngComm 19:4485–4488. https://doi.org/10.1039/C7CE01266G

    Article  CAS  Google Scholar 

  132. Li W, Spada L, Tasinato N, Rampino S, Evangelisti L, Gualandi A, Cozzi PG, Melandri S, Barone V, Puzzarini C (2018) Theory meets experiment for noncovalent complexes: the puzzling case of pnicogen interactions. Angew Chem Int Ed 57:13853–13857. https://doi.org/10.1002/anie.201807751

    Article  CAS  Google Scholar 

  133. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  134. Allouche F, Selmi W, Zid MF, Benlecheb T (2019) Theoretical and experimental study of new hybrid compound rich in hydrogen bonding: 2-carboxyanilinium hypophosphite. J Mol Struct 1179:756–763. https://doi.org/10.1016/j.molstruc.2018.11.069

    Article  CAS  Google Scholar 

  135. Lemmerer A (2011) Six two- and three-component ammonium carboxylate salt structures with a ladder-type hydrogen-bonding motif, three incorporating neutral carboxylic acid molecules. Acta Cryst C67:o92–o99. https://doi.org/10.1107/S0108270111003714

    Article  CAS  Google Scholar 

  136. Shubnell AJ, Squattrito PJ (1994) Monohydrates of two isomers of aminotoluenesulfonic acid. Acta Cryst C50:1296–1299. https://doi.org/10.1107/S0108270193012077

    Article  CAS  Google Scholar 

  137. Joshi PR, Ramanathan N, Sundararajan K, Sankaran K (2017) Phosphorous bonding in PCl3: H2O adducts: a matrix isolation infrared and ab initio computational studies. J Mol Spectrosc 331:44–52. https://doi.org/10.1016/j.jms.2016.11.005

    Article  CAS  Google Scholar 

  138. Ramanathan N, Sankaran K, Sundararajan K (2016) PCl3–C6H6 heterodimers: evidence for P⋯π phosphorus bonding at low temperatures. Phys Chem Chem Phys 18:19350–19358. https://doi.org/10.1039/C6CP03825E

    Article  CAS  PubMed  Google Scholar 

  139. Carter TG, Healey ER, Pitt MA, Johnson DW (2005) Secondary bonding interactions observed in two arsenic thiolate complexes. Inorg Chem 44:9634–9636. https://doi.org/10.1021/ic051522o

    Article  CAS  PubMed  Google Scholar 

  140. Carter TG, Vickaryous WJ, Cangelosi VM, Johnson DW (2007) Supramolecular arsenic coordination chemistry. Comments Inorg Chem 28:97–122. https://doi.org/10.1080/02603590701560994

    Article  CAS  Google Scholar 

  141. Vickaryous WJ, Herges R, Johnson DW (2004) Arsenic-π Interactions stabilize a self-sssembled As2L3 supramolecular complex. Angew Chem Int Ed 43:5831–5833. https://doi.org/10.1002/ange.200461011

    Article  CAS  Google Scholar 

  142. Moaven S, Yu J, Yasin J, Unruh DK, Cozzolino AF (2017) Precise Steric control over 2D versus 3D self-assembly of Antimony (III) alkoxide cages through strong secondary bonding interactions. Inorg Chem 56:8372–8380. https://doi.org/10.1021/acs.inorgchem.7b01049

    Article  CAS  PubMed  Google Scholar 

  143. Leroy C, Johannson R, Bryce DL (2019) 121/123Sb nuclear quadrupole resonance spectroscopy: characterization of non-covalent pnictogen bonds and NQR crystallography. J Phys Chem A 123:1030–1043. https://doi.org/10.1021/acs.jpca.8b11490

    Article  CAS  PubMed  Google Scholar 

  144. Cangelosi VM, Pitt MA, Vickaryous WJ, Allen CA, Zakharov LN, Johnson DW (2010) Design considerations for the group 15 elements: the pnictogen⋯π interaction as a complementary component in supramolecular assembly design. Cryst Growth Des 10:3531–3536. https://doi.org/10.1021/cg100444n

    Article  CAS  Google Scholar 

  145. Benjamin SL, Levason W, Reid G, Warr RP (2012) Halostibines SbMeX2 and SbMe2X: Lewis acids or Lewis bases? Organometallics 31:1025–1034. https://doi.org/10.1021/om2010996

    Article  CAS  Google Scholar 

  146. Diel BN, Huber TL, Ambacher WG (1999) Synthesis and characterization of the first examples of 1,3,2-diazastibole and 1,3,2-diazabismole ring compounds. Heteroat Chem 10:423–429. https://doi.org/10.1002/(SICI)1098-1071(1999)10:5%3c423::AID-HC13%3e3.0.CO;2-B

    Article  CAS  Google Scholar 

  147. Anderson KM, Baylies CJ, Jahan AHMM, Norman NC, Orpen AG, Starbuck J (2003) Coordination complexes of the bismuth(iii) thiolates Bi(SC6F5)3 and Bi(SC6Cl5)3 with pyridineligands. Dalton Trans 3270–3277. https://doi.org/10.1039/B305711A

  148. Charmant JPH, Jahan AHMM, Norman NC, Orpen AG, Podesta TJ (2004) Coordination polymers formed by Bi (SC6F5)3 with multidentate polypyridyl ligands. CrystEngComm 6:29–33. https://doi.org/10.1039/B315176J

    Article  CAS  Google Scholar 

  149. Murafuji T, Nagasue M, Tashiro Y, Sugihara Y, Azuma N (2000) Structural characteristics of aryloxybismuthanes stabilized by hypervalent bond formation. Synthesis, incorporation of 4-methoxyphenol through hydrogen bonding, and crystal supramolecularity. Organometallics 19:1003–1007. https://doi.org/10.1021/om9908534

  150. Heift D, Mokrai R, Barrett J, Apperley D, Batsanov A, Benkö Z (2019) Weak pnictogen bond with bismuth: experimental evidence based on Bi−P through‐space coupling. Chem Eur J 25:4017–4024. https://doi.org/10.1002/chem.201900266

  151. Silvestru C, Breunig HJ, Althaus H (1999) Structural chemistry of bismuth compounds. I. Organobismuth derivatives. Chem Rev 99:3277–3328. https://doi.org/10.1021/cr980083q

    Article  CAS  PubMed  Google Scholar 

  152. Nekoueishahraki B, Samuel PP, Roesky HW, Stern D, Matussek J, Stalke D (2012) Organobismuth (III) and dibismuthine complexes bearing N, N′-Disubstituted 1, 8-diaminonaphthalene ligand: synthesis, structure, and reactivity. Organometallics 31:6697–6703. https://doi.org/10.1021/om300758s

    Article  CAS  Google Scholar 

  153. Briand GG, Burford N (2000) Coordination complexes of bismuth (III) involving organic ligands with pnictogen or chalcogen donors. Adv Inorg Chem 50:285–357. https://doi.org/10.1016/S0898-8838(00)50007-5

    Article  CAS  Google Scholar 

  154. Agocs L, Burford N, Cameron TS, Curtis JM, Richardson JF, Robertson KN, Yhard GB (1996) Spectroscopic, Structural, and Mass spectrometric studies on two systematic series of dithiabismuth(III) heterocycles: identification of bismuthenium cations and their solvent complexes. J Am Chem Soc 118:3225–3232. https://doi.org/10.1021/ja9539756

    Article  CAS  Google Scholar 

  155. Benjamin SL, Levason W, Reid G, Rogers MC, Warr RP (2012) Lewis base complexes of methyldihalobismuthines BiMeX2 (X = Cl or Br). J Organomet Chem 708–709:106–111. https://doi.org/10.1016/j.jorganchem.2012.02.030

    Article  CAS  Google Scholar 

  156. Trubenstein HJ, Moaven S, Vega M, Unruh DK, Cozzolino AF (2019) Pnictogen bonding with alkoxide cages: which pnictogen is best? New J Chem 43:14305–14312. https://doi.org/10.1039/C9NJ03648B

    Article  CAS  Google Scholar 

  157. Muller G, Brand J, Jetter SE (2001) Donor-acceptor complexes between organoamines and phosphorus tribromide. Z Naturforschung, B: Chem Sci 56:1163–1171. https://doi.org/10.1515/znb-2001-1111

    Article  CAS  Google Scholar 

  158. Robinson TP, Lo S-K, De Rosa D, Aldridge S, Goicoechea JM (2016) On the ambiphilic reactivity of geometrically constrained Phosphorus(III) and Arsenic(III) compounds: insights into their interaction with ionic substrates. Chem Eur J 22:15712–15724. https://doi.org/10.1002/chem.201603135

    Article  CAS  PubMed  Google Scholar 

  159. Benz S, Poblador-Bahamonde AI, Low-Ders N, Matile S (2018) Catalysis with pnictogen, chalcogen, and halogen bonds. Angew Chem Int Ed 57:5408–5412. https://doi.org/10.1002/anie.201801452

    Article  CAS  Google Scholar 

  160. Lim JYC, Beer PD (2018) Sigma-hole interactions in anion recognition. Chem 4:731–783. https://doi.org/10.1016/j.chempr.2018.02.022

  161. Hirai M, Cho J, Gabbaï FP (2016) Promoting the hydrosilylation of benzaldehyde by using a dicationic antimony-based Lewis acid: evidence for the double electrophilic activation of the carbonyl substrate. Chem Eur J 22:6537–6541. https://doi.org/10.1002/chem.201600971

    Article  CAS  PubMed  Google Scholar 

  162. Qiu J, Unruh DK, Cozzolino AF (2016) Design, synthesis, and structural characterization of a Bisantimony(III) compound for anion binding and the density functional theory evaluation of halide binding through antimony secondary bonding interactions. J Phys Chem A 120:9257–9269. https://doi.org/10.1021/acs.jpca.6b08170

  163. Haiges R, Vij A, Boatz JA, Schneider S, Schroer T, Gerken M, Christe KO (2004) First structural characterization of binary AsIII and SbIII azides. Chem Eur J 10:508–517. https://doi.org/10.1002/chem.200305482

  164. Deokar P, Leitz D, Stein TH, Vasiliu M, Dixon DA, Christe KO, Haiges R (2016) Preparation and characterization of antimony and arsenic tricyanide and their 2,2′-bipyridine adducts. Chem Eur J 22:13251–13257. https://doi.org/10.1002/chem.201602436

    Article  CAS  PubMed  Google Scholar 

  165. Levason W, Light ME, Maheshwari S, Reid G, Zhang W (2011) Unusual neutral ligand coordination to arsenic and antimony trifluoride. Dalton Trans 40:5291–5297. https://doi.org/10.1039/C1DT10113G

    Article  CAS  PubMed  Google Scholar 

  166. Murray JS, Lane P, Clark T, Politzer P (2007) σ-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038. https://doi.org/10.1007/s00894-007-0225-4

    Article  CAS  PubMed  Google Scholar 

  167. Varadwaj PR, Varadwaj A, Marques HM, MacDougall PJ (2019) The chalcogen bond: can it be formed by oxygen? Phys Chem Chem Phys 21:19969–19986. https://doi.org/10.1039/C9CP03783G

    Article  CAS  PubMed  Google Scholar 

  168. Varadwaj PR (2019) Does oxygen feature chalcogen bonding? Molecules 24:3166. https://doi.org/10.3390/molecules24173166

    Article  CAS  PubMed Central  Google Scholar 

  169. Scilabra P, Terraneo G, Resnati G (2019) The chalcogen bond in crystalline solids: a world parallel to halogen bond. Acc Chem Res 52:1313–1324. https://doi.org/10.1021/acs.accounts.9b00037

    Article  CAS  PubMed  Google Scholar 

  170. Fischer D, Klapötke TM, Stierstorfer J (2015) 5-Nitriminotetrazole 1-oxide: an exciting oxygen- and nitrogen-rich heterocycle. Eur J Inorg Chem 2015:4628–4632. https://doi.org/10.1002/ejic.201500944

    Article  CAS  Google Scholar 

  171. Göbel M, Karaghiosoff K, Klapötke TM, Piercey DG, Stierstorfer J (2010) Nitrotetrazolate-2N-oxides and the strategy of N-oxide introduction. J Am Chem Soc 132:17216–17226. https://doi.org/10.1021/ja106892a

    Article  CAS  PubMed  Google Scholar 

  172. Fischer D, Klapötke TM, Stierstorfer J (2014) Synthesis and characterization of diaminobisfuroxane. Eur J Inorg Chem 2014:5808–5811. https://doi.org/10.1002/ejic.201402960

    Article  CAS  Google Scholar 

  173. Nayak SK, Kumar V, Murray JS, Politzer P, Terraneo G, Pilati T, Metrangolo P, Resnati G (2017) Fluorination promotes chalcogen bonding in crystalline solids. CrystEngComm 19:4955–4959. https://doi.org/10.1039/C7CE01070B

    Article  CAS  Google Scholar 

  174. Chenard BL, Harlow RL, Johnson AL, Vladuchick SA (1985) Synthesis, structure, and properties of pentathiepins. J Am Chem Soc 107:3871–3879. https://doi.org/10.1021/ja00299a019

    Article  CAS  Google Scholar 

  175. Alkaya ZA, İlkimen H, Yenikaya C, Tunca E, Bülbül M, Tunç T, Sarı M (2018) Synthesis and characterization of Cu(II) complexes of 2-amino-6-sulfamoylbenzothiazole and their inhibition studies on carbonic anhydrase isoenzymes. Polyhedron 151:199–205. https://doi.org/10.1016/j.poly.2018.05.015

    Article  CAS  Google Scholar 

  176. Hedidi M, Bentabed-Ababsa G, Derdour A, Roisnel T, Dorcet V, Chevallier F, Picot L, Thiéry V, Mongin F (2014) Synthesis of C, N′-linked bis-heterocycles using a deprotometalation–iodination–N-arylation sequence and evaluation of their antiproliferative activity in melanoma cells. Bioorg Med Chem 22:3498–3507. https://doi.org/10.1016/j.bmc.2014.04.028

    Article  CAS  PubMed  Google Scholar 

  177. Burk RF (ed) (1994) Selenium in biology and human health. Springer, New York

    Google Scholar 

  178. Saha UK (2017) Selenium: a vital element in soil-pant-animal/human continuum. J Agric Sci Bot 1:1–3. https://doi.org/10.35841/2591-7897.1.1.1-3

    Article  Google Scholar 

  179. Popa RA, Licarete E, Banciu M, Silvestru A (2018) Organoselenium compounds containing pyrazole or phenylthiazole groups: synthesis, structure, tin(IV) complexes and antiproliferative activity. Appl Organomet Chem 32:e4252. https://doi.org/10.1002/aoc.4252

  180. Kimura T, Nakahodo T, Fujihara H, Suzuki E (2014) 4,5-Dicyano-3,6-diethylbenzo-1,2-diselenete, a Highly Stable 1,2-Diselenete: its preparation, structural characterization, calculated molecular orbitals, and complexation with tetrakis(triphenylphosphine)palladium. Inorg Chem 53:4411–4417. https://doi.org/10.1021/ic5000765

    Article  CAS  PubMed  Google Scholar 

  181. Xu Y, Kumar V, Bradshaw MJZ, Bryce DL (2020) Chalcogen-bonded cocrystals of substituted pyridine N-oxides and chalcogenodiazoles: an X-ray diffraction and solid-state NMR investigation. Cryst Growth Des 20:7910–7920. https://doi.org/10.1021/acs.cgd.0c01173

    Article  CAS  Google Scholar 

  182. Suzuki T, Fujii H, Yamashita Y, Kabuto C, Tanaka S, Harasawa M, Mukai T, Miyashi T (1992) Clathrate formation and molecular recognition by novel chalcogen-cyano interactions in tetracyanoquinodimethanes fused with thiadiazole and selenadiazole rings. J Am Chem Soc 114:3034–3043. https://doi.org/10.1021/ja00034a041

    Article  CAS  Google Scholar 

  183. Fritz S, Ehm C, Lentz D (2015) Structure and chemistry of SeFx(CN)4–x compounds. Inorg Chem 54:5220–5231. https://doi.org/10.1021/acs.inorgchem.5b00107

    Article  CAS  PubMed  Google Scholar 

  184. Garrett GE, Gibson GL, Straus RN, Seferos DS, Taylor MS (2015) Chalcogen bonding in solution: interactions of benzotelluradiazoles with anionic and uncharged Lewis bases. J Am Chem Soc 137:4126–4133. https://doi.org/10.1021/ja512183e

    Article  CAS  PubMed  Google Scholar 

  185. Navarro-García E, Galmés B, Velasco MD, Frontera A, Caballero A (2020) Anion recognition by neutral chalcogen bonding receptors: experimental and theoretical investigations. Chem Eur J 26:4706–4713. https://doi.org/10.1002/chem.201905786

    Article  CAS  PubMed  Google Scholar 

  186. Cozzolino AF, Elder PJW, Vargas-Vaca I (2011) A survey of tellurium-centered secondary-bonding supramolecular synthons. Coord Chem Rev 255:1426–1438. https://doi.org/10.1016/j.ccr.2010.12.015

    Article  CAS  Google Scholar 

  187. Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620. https://doi.org/10.1002/qua.24357

    Article  CAS  Google Scholar 

  188. Nziko VPN, Scheiner S (2014) Chalcogen bonding between tetravalent SF4 and amines. J Phys Chem A 118:10849–10856. https://doi.org/10.1021/jp509212t

    Article  CAS  Google Scholar 

  189. Subrahmanyan I, Aravamudan G, Rout GC, Seshasayee M (1984) Synthesis, properties, and molecular structure of bis(thiobenzoato-S)tellurium(II), C14H10O2S2Te(II). J Crystal Spect Res 14:239–248. https://doi.org/10.1007/BF01161161

    Article  CAS  Google Scholar 

  190. Neidlein R, Knecht D, Gieren A, Ruiz-Perez C (1987) Synthese und Röntgenstrukturanalyse des Phenanthro[9,10-c]-l,2,5-telluradiazols. Z Naturforschung, B: Chem Sci 42:84–90

    Article  CAS  Google Scholar 

  191. Eskandari K, Lesani M (2015) Does fluorine participate in halogen bonding? Chem Eur J 21:4739–4746. https://doi.org/10.1002/chem.201405054

    Article  CAS  PubMed  Google Scholar 

  192. Chopra D, Row TNG (2011) Role of organic fluorine in crystal engineering. CrystEngComm 13:2175–2186. https://doi.org/10.1039/C0CE00538J

    Article  CAS  Google Scholar 

  193. Laurence C, Graton J, Gal JF (2011) An overview of Lewis basicity and affinity scales. J Chem Educ 88:1651–1657. https://doi.org/10.1021/ed200057b

    Article  CAS  Google Scholar 

  194. Lu YX, Zou JW, Yu QS, Jiang YJ, Zhao WN (2007) Ab initio investigation of halogen bonding interactions involving fluorine as an electron acceptor. Chem Phys Lett 449:6–10. https://doi.org/10.1016/j.cplett.2007.09.087

    Article  CAS  Google Scholar 

  195. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729. https://doi.org/10.1007/s00894-008-0386-9

    Article  CAS  PubMed  Google Scholar 

  196. Murray JS, Politzer P (2009) Molecular surfaces, van der Waals radii and electrostatic potentials in relation to noncovalent interactions. Croat Chem Acta 82:267–275

    CAS  Google Scholar 

  197. Li W, Zeng Y, Zhang X, Zheng S, Meng L (2014) The enhancing effects of group V σ-hole interactions on the F⋯O halogen bond. Phys Chem Chem Phys 16:19282–19289. https://doi.org/10.1039/C4CP02430C

    Article  CAS  PubMed  Google Scholar 

  198. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) The fluorine atom as a halogen bond donor, viz. a positive site CrystEngComm 13:6593–6596. https://doi.org/10.1039/C1CE05554B

  199. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Isshiki Y, Morikami K, Shimma N, Haap W, Banner DW, Diederich F (2011) Halogen bonding at the active sites of human cathepsin L and MEK1 kinase: efficient interactions in different environments ChemMedChem 6:2048–2054. https://doi.org/10.1002/cmdc.201100353

  200. Dikundwar AG, Row TNG (2012) Evidence for the “Amphoteric” nature of fluorine in halogen bonds: an instance of Cl⋯F contact. Cryst Growth Des 12:1713–1716. https://doi.org/10.1021/cg3002477

    Article  CAS  Google Scholar 

  201. Pavan MS, Durga Prasad K, Guru Row TN (2013) Halogen bonding in fluorine: experimental charge density study on intermolecular F⋯F and F⋯S donor–acceptor contacts. Chem Commun 49:7558–7560. https://doi.org/10.1039/c3cc43513j

    Article  CAS  Google Scholar 

  202. Hathwar VR, Chopra D, Panini P, Guru Row TN (2014) Revealing the polarizability of organic fluorine in the trifluoromethyl group: implications in supramolecular chemistry. Cryst Growth Des 14:5366–5369. https://doi.org/10.1021/cg501240r

    Article  CAS  Google Scholar 

  203. Sirohiwal A, Hathwar VR, Dey D, Regunathan R, Chopra D. Characterization of fluorine-centred ‘F⋯O’ [sigma]-hole interactions in the solid state. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 73:140–152. https://doi.org/10.1107/s2052520616017492

  204. Jelsch C, Guillot B (2017) Directional O⋯F halogen bonds. Acta Crystallogr Sect B: Struct Sci Cryst Eng Mater 73:136–137. https://doi.org/10.1107/s205252061700467x

    Article  CAS  Google Scholar 

  205. Scheiner S (2020) J F-halogen bond: conditions for its existence. J Phys Chem A 124:7290–7299. https://doi.org/10.1021/acs.jpca.0c06803

    Article  CAS  PubMed  Google Scholar 

  206. Etter MC, Kress RB, Bernstein J, Cash DJ (1984) Solid-state chemistry and structures of a new class of mixed dyes. Cyanine-oxonol. J Am Chem Soc 106:6921–6927. https://doi.org/10.1021/ja00335a009

    Article  CAS  Google Scholar 

  207. Klapp LRR, Bruhn C, Leibold M, Siemeling U (2013) Ferrocene-based bis (guanidines): superbases for tridentate N, Fe, N-coordination. Organometallics 32:5862–5872. https://doi.org/10.1021/om400454v

    Article  CAS  Google Scholar 

  208. Britton D (2012) 3,5-Dichloro-4-cyanobenzoic acid co-crystals with carbon tetrachloride, naphthalene, and anthracene. J Chem Crystallogr 42:851–855. https://doi.org/10.1007/s10870-012-0324-7

    Article  CAS  Google Scholar 

  209. Katlenok EA, Haukka M, Levin OV, Frontera A, Kukushkin VY (2020) Supramolecular assembly of metal complexes by (Aryl) I⋯dz2 [PtII] halogen bond. Chem Eur J 26:7692–7701. https://doi.org/10.1002/chem.202001196

    Article  CAS  PubMed  Google Scholar 

  210. Bikbaeva ZM, Ivanov DM, Novikov AS, Ananyev IV, Bokach NA, Kukushkin VY (2017) Electrophilic–nucleophilic dualism of Nickel(II) toward Ni⋯I noncovalent interactions: semicoordination of iodine centers via electron belt and halogen bonding via σ-hole. Inorg Chem 56:13562–13578. https://doi.org/10.1021/acsinorgchem7b02224

  211. Rozhkov AV, Eliseeva AA, Baykov SV, Galmés B, Frontera A, Kukushkin VY (2020) One-Pot Route to X-perfluoroarenes (X = Br, I) based on FeIII-assisted C-F Functionalization and utilization of these arenes as building blocks for crystal engineering involving halogen bonding. Cryst Growth Des 20:5908–5921. https://doi.org/10.1021/acs.cgd.0c00606

    Article  CAS  Google Scholar 

  212. Eliseeva AA, Ivanov DM, Rozhkov AV, Ananyev IV, Frontera A, Kukushkin VY (2021) Bifurcated halogen bonding involving two Rhodium (I) centers as an integrated σ-hole acceptor. JACS Au 1:354–361. https://doi.org/10.1021/jacsau.1c00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Gossage RA, Ryabov AD, Spek AL, Stufkens DJ, van Beek JAM, van Eldik R, van Koten G (1999) Models for the initial stages of oxidative addition. Synthesis, characterization, and mechanistic investigation of η1-I2 organometallic “Pincer” complexes of platinum. X-ray crystal structures of [PtI(C6H3{CH2NMe2}2–2,6)(η1-I2)] and exo-meso-[Pt(η1-I3)(η1-I2)(C6H3{CH2N(t-Bu)Me}2–2,6)]. J Am Chem Soc 121:2488–2497. https://doi.org/10.1021/ja982095z

  214. Ivanov DM, Kirina YV, Novikov AS, Starova GL, Kukushkin VY (2016) Efficient π-stacking with benzene provides 2D assembly of trans-[PtCl2 (p-CF3C6H4CN)2]. J Mol Struct 1104:19–23. https://doi.org/10.1016/j.molstruc.2015.09.027

    Article  CAS  Google Scholar 

  215. Baykov SV, Dabranskaya U, Ivanov DM, Novikov AS, Boyarskiy VP (2018) Pt/Pd and I/Br isostructural exchange provides formation of C–I⋯Pd, C–Br⋯Pt, and C–Br⋯Pd metal-involving halogen bonding. Cryst Growth Des 18:5973–5980. https://doi.org/10.1021/acs.cgd.8b00762

  216. Bulatova M, Ivanov DM, Haukka M (2021) Classics meet classics: theoretical and experimental studies of halogen bonding in adducts of Platinum(II) 1,5-cyclooctadiene halide complexes with diiodine, iodoform, and 1,4-diiodotetrafluorobenzene. Cryst Growth Des 21:974–987. https://doi.org/10.1021/acs.cgd.0c01314

    Article  CAS  Google Scholar 

  217. Ivanov DM, Bokach NA, Kukushkin VY, Frontera A (2021) Metal centers as nucleophiles: oxymoron of halogen bond-involving crystal engineering. Chem Eur J 27. https://doi.org/10.1002/chem.202103173

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Frontera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauzá, A., Frontera, A. (2022). Supramolecular Assemblies Based on σ-hole Interactions. In: Aboudzadeh, M.A., Frontera, A. (eds) Supramolecular Assemblies Based on Electrostatic Interactions. Springer, Cham. https://doi.org/10.1007/978-3-031-00657-9_7

Download citation

Publish with us

Policies and ethics