Skip to main content
Log in

Mechanistic study of fenoprofen photoisomerization to pure (S)-fenoprofen: a DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This work provides a comprehensive DFT study on the conversion mechanism and photoisomerization of the effective and commonly used nonsteroidal anti-inflammatory medicine fenoprofen. The results obtained exhibit that the rearrangement procedure of (R)-fenoprofen to its (S)-enantiomer occurs in [1,3]-hydrogen shifts with inversion of configuration at chiral center C8. According to the computed energies, we can find out that the excitation of (R)-fenoprofen methyl ester in its primary form to the first excited singlet state S1 at λ = 240 nm is the rate-limiting step of photoisomerization of fenoprofen. In order to obtain further insight into the isomerization process occurring upon excitation, this process was studied by scanning the C8-H11 distance for the excited singlet. Our calculations revealed that the isomerization process requires passing a barrier of approximately 84 kcal/mol. Furthermore, the more photostability of (S)-fenoprofen methyl ester than that of its related (R)-enantiomer can be attributed to the − 1.34 kcal/mol of thermodynamic stability of the (S)-fenoprofen methyl ester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

Notes

  1. Aromatic

References

  1. Hutt AJ, Caldwell J (1984) The importance of stereochemistry in the clinical pharmacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs. Clin Pharmacokinet 9(4):371–373

    Article  CAS  Google Scholar 

  2. Fedarava, K. (2011) Hypothermie versus Normothermie an der Herz-Lungen-Maschine bei Kindern zwischen 5 und 10 kg Körpergewicht. (Doctoral dissertation)

  3. Adams S, Bresloff P, Mason C (1976) Pharmacological differences between the optical isomers of ibuprofen: evidence for metabolic inversion of the (—)-isomer. J Pharm Pharmacol 28(3):256–257

    Article  CAS  Google Scholar 

  4. Hutt AJ, Caldwell J (1983) The metabolic chiral inversion of 2-arylpropionic acids—a novel route with pharmacological consequences. J Pharm Pharmacol 35(11):693–704

    Article  CAS  Google Scholar 

  5. Abramson S, Korchak H, Ludewig R, Edelson H, Haines K, Levin RI, Herman R, Rider L, Kimmel S, Weissmann G (1985) Modes of action of aspirin-like drugs. Proc Natl Acad Sci 82(21):7227–7231

    Article  CAS  Google Scholar 

  6. Gaut ZN, Baruth H, Randall L, Ashley C, Paulsrud J (1975) Stereoisomeric relationships among anti-inflammatory activity, inhibition of platelet aggregation, and inhibition of prostaglandin synthetase. Prostaglandins 10(4):59–66

    Article  CAS  Google Scholar 

  7. Roszkowski AP, Rooks WH, Tomolonis AJ, Miller LM (1971) Anti-inflammatory and analgetic properties of d-2-(6′-methoxy-2′-naphthyl)-propionic acid (naproxen). J Pharmacol Exp Ther 179(1):114–123

    CAS  PubMed  Google Scholar 

  8. Evans AM (1992) Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. Eur J Clin Pharmacol 42(3):237–256

    Article  CAS  Google Scholar 

  9. Hall S, Hassanzadeh-Khayyat M, Knadler M, Mayer P (1992) Pulmonary inversion of 2-arylpropionic acids: influence of protein binding. Chirality 4(6):349–352

    Article  CAS  Google Scholar 

  10. Berry B, Jamali F (1991) Presystemic and systemic chiral inversion of R-(−)-fenoprofen in the rat. J Pharmacol Exp Ther 258(2):695–701

    CAS  PubMed  Google Scholar 

  11. Cox J, Cox S, VanGiessen G, Ruwart M (1985) Ibuprofen stereoisomer hepatic clearance and distribution in normal and fatty in situ perfused rat liver. J Pharmacol Exp Ther 232(3):636–643

    CAS  PubMed  Google Scholar 

  12. Jeffrey P, Tucker GT, Bye A, Crewe HK, Wright PA (1991) The site of inversion of R (−)-ibuprofen: studies using rat in-situ isolated perfused intestine/liver preparations. J Pharm Pharmacol 43(10):715–720

    Article  CAS  Google Scholar 

  13. Geisslinger G, Schuster O, Stock K-P, Loew D, Bach G, Brune K (1990) Pharmacokinetics of S (+)-and R (−)-ibuprofen in volunteers and first clinical experience of S (+)-ibuprofen in rheumatoid arthritis. Eur J Clin Pharmacol 38(5):493–497

    Article  CAS  Google Scholar 

  14. Chen CS, Sih CJ (1989) General aspects and optimization of enantioselective biocatalysis in organic solvents: the use of lipases [new synthetic methods (76)]. Angew Chem Int Ed Eng 28(6):695–707

    Article  Google Scholar 

  15. Mustranta A (1992) Use of lipases in the resolution of racemic ibuprofen. Appl Microbiol Biotechnol 38(1):61–66

    Article  CAS  Google Scholar 

  16. Bornscheuer UT, Kazlauskas RJ (2006) Hydrolases in organic synthesis: regio-and stereoselective biotransformations. John Wiley & Sons

  17. Ghanem A, Aboul-Enein HY (2005) Application of lipases in kinetic resolution of racemates. Chirality 17(1):1–15

    Article  CAS  Google Scholar 

  18. Neese, F, & Wennmohs, F (2013) ORCA (3.0. 2)-An ab initio. DFT and semiempirical SCF-MO package,(Max-Planck-Institute for Chemical Energy Conversion Stiftstr. 34-36, 45470 Mulheim ad Ruhr, Germany)

  19. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  20. Wodrich MD, Corminboeuf C, Schleyer PR (2006) Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Org Lett 8(17):3631–3634

    Article  CAS  Google Scholar 

  21. Grimme S, Steinmetz M, Korth M (2007) Stereoelectronic substituent effects in saturated main group molecules: severe problems of current Kohn−Sham density functional theory. J Chem Theory Comput 3(1):42–45

    Article  CAS  Google Scholar 

  22. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2008) Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 4(11):1849–1868

    Article  CAS  Google Scholar 

  24. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241

    Article  CAS  Google Scholar 

  25. Grimme S, Ehrlich S, Goerigk LJJocc (2011) Effect of the damping function in dispersion corrected density functional theory. 32 (7):1456–1465

  26. Goerigk, L, & Grimme, S (2010) Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Journal of chemical theory and computation. 7(2):291-309

  27. Petersson G, Al-Laham MA (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94(9):6081–6090

    Article  CAS  Google Scholar 

  28. Petersson G, Tensfeldt TG, Montgomery Jr J (1991) A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J Chem Phys 94(9):6091–6101

    Article  CAS  Google Scholar 

  29. Montgomery Jr J, Ochterski J, Petersson G (1994) A complete basis set model chemistry. IV. An improved atomic pair natural orbital method. J Chem Phys 101(7):5900–5909

    Article  CAS  Google Scholar 

  30. Montgomery Jr JA, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112(15):6532–6542

    Article  CAS  Google Scholar 

  31. Ess DH, Houk K (2005) Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1, 3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions. J Phys Chem A 109(42):9542–9553

    Article  CAS  Google Scholar 

  32. Barone V, Cossi M, Tomasi JJJoCC (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. 19 (4):404–417

  33. Chen C-S, Shieh W-R, Lu P-H, Harriman S, Chen C-Y (1991) Metabolic stereoisomeric inversion of ibuprofen in mammals. Biochim Biophys Acta Protein Struct Mol Enzymol 1078(3):411–417

    Article  CAS  Google Scholar 

  34. Gill G (1968) The application of the Woodward–Hoffmann orbital symmetry rules to concerted organic reactions. Q Rev Chem Soc 22(3):338–389

    Article  CAS  Google Scholar 

  35. Sato D, Shiba T, Karaki T, Yamagata W, Nozaki T, Nakazawa T, Harada S (2017) X-ray snapshots of a pyridoxal enzyme: a catalytic mechanism involving concerted [1,5]-hydrogen sigmatropy in methionine γ-lyase. Sci Rep 7(1):4874. https://doi.org/10.1038/s41598-017-05032-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Šolomek Ts RP, Mou Z, Kertesz M, Juríček M (2018) Cethrene: the chameleon of Woodward–Hoffmann rules. J Org Chem 83(8):4769–4774

    Article  Google Scholar 

  37. Woodward RB, Hoffmann R (1965) Selection rules for sigmatropic reactions. J Am Chem Soc 87(11):2511–2513

    Article  Google Scholar 

  38. Schreiber SL, Santini C (1984) Cyclobutene bridgehead olefin route to the American cockroach sex pheromone, periplanone-B. J Am Chem Soc 106(14):4038–4039. https://doi.org/10.1021/ja00326a028

    Article  CAS  Google Scholar 

  39. Bulo RE, Ehlers AW, Grimme S, Lammertsma K (2002) Vinylphosphirane−phospholene rearrangements: pericyclic [1, 3]-sigmatropic shifts or not? J Am Chem Soc 124(46):13903–13910

    Article  CAS  Google Scholar 

  40. Cortizo-Lacalle D, Howells CT, Pandey UK, Cameron J, Findlay NJ, Inigo AR, Tuttle T, Skabara PJ, Samuel ID (2014) Solution processable diketopyrrolopyrrole (DPP) cored small molecules with BODIPY end groups as novel donors for organic solar cells. Beilstein J Org Chem 10(1):2683–2695

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran, and the Research and Computational Lab of Theoretical Chemistry and Nano Structures of Razi University, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Hadidi.

Ethics declarations

This study complied with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The fenoprofen methyl ester photoisomerization is the main process in the photopreparation of anti-inflammatory medicine (S)-fenoprofen

• The rearrangement process of (R)-fenoprofen to its (S)-enantiomer happens in [1,3]-hydrogen shifts

• The excitation of (R)-fenoprofen methyl ester to the first excited singlet state S1 is the rate-limiting step of fenoprofen photoisomerization

• The isomerization process passed through a ~ 84 kcal/mol barrier of transition state

• The incorporation of an explicit water molecule could decrease the barriers to ~ 70 kcal/mol

• The more photostability of (S)-fenoprofen methyl ester than that of its related (R)-enantiomer is attributed to the − 1.34 kcal/mol of thermodynamic stability of the (S)-fenoprofen methyl ester

Electronic supplementary material

ESM 1

The Cartesian coordinates of (R)-fenoprofen methyl ester, (E)-1-methoxy-2-(3-phenoxyphenyl)prop-1-en-1-ol, (S)-fenoprofen methyl ester and the transition states. (DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadidi, S., Shiri, F. & Norouzibazaz, M. Mechanistic study of fenoprofen photoisomerization to pure (S)-fenoprofen: a DFT study. Struct Chem 31, 115–122 (2020). https://doi.org/10.1007/s11224-019-01382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01382-1

Keywords

Navigation