Skip to main content

Advertisement

Log in

The investigation on ibuprofen methyl ester isomerization as a fundamental stage in the preparation of antipyretic medicine (R)-ibuprofen: a computational insight

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The isomerization of the widely used nonsteroid anti-inflammatory medicine ibuprofen was investigated by employing the hybrid density functional theory. The rearrangement reaction of (R)-(−)-ibuprofen to its (S)-( +)-isomer consists of a [1,3]-hydrogen shifts. This process causes an inversion of configuration at C7. The obtained results revealed that the rate-limiting step of ibuprofen isomerization is the excitation of (R)-(−)-ibuprofen methyl ester in its initial structure to the first excited singlet state S1 at λ = 231 nm. In addition, the C7-H19 distance was investigated and analyzed for the excited singlet to obtain more information about the isomerization reaction occurring upon excitation. Based upon the calculations, passing through a barrier of around 72 kcal/mol is necessary for this isomerization reaction. Furthermore, the -0.944 kcal/mol of thermodynamic stability of the (S)-( +)-ibuprofen methyl ester elucidates the more photostability of (S)-( +)-ibuprofen methyl ester than (R)-(−)-isomer. The overall reactions with the different components belonging to each reaction step have been fully analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

Notes

  1. Aromatic.

References

  1. Rainsford KD (1999a) History and development of ibuprofen. Taylor and Francis, London, p 1999a

    Google Scholar 

  2. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59(3):309–315

    CAS  PubMed  Google Scholar 

  3. Ambrogi V, Fardella G, Grandolini G, Perioli L (2001) Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents I. Intercalation and in vitro release of ibuprofen. Int J Pharm 220(1–2):23–32

    CAS  PubMed  Google Scholar 

  4. Delle Piane M, Corno M, Ugliengo P (2016) Propionic acid derivatives confined in mesoporous silica: monomers or dimers? The case of ibuprofen investigated by static and dynamic ab initio simulations. Theoret Chem Acc 135(3):53

    Google Scholar 

  5. Manrique J, Martinez F (2007) Solubility of ibuprofen in some ethanol+ water cosolvent mixtures at several temperatures. Lat Am J Pharm 26(3):344

    CAS  Google Scholar 

  6. Shahabadi N, Shiri F, Norouzibazaz M, Falah A (2018) Disquisition on the interaction of ibuprofen–Zn (II) complex with calf thymus DNA by spectroscopic techniques and the use of Hoechst 33258 and Methylene blue dyes as spectral probes. Nucleosides Nucleotides Nucleic Acids 37(3):125–146

    CAS  PubMed  Google Scholar 

  7. Law SLS, Southard KA, Law AS, Logan HL, Jakobsen JR (2000) An evaluation of preoperative ibuprofen for treatment of pain associated with orthodontic separator placement. Am J Orthod Dentofac Orthop 118(6):629–635

    Google Scholar 

  8. Dawood MY (1984) Ibuprofen and dysmenorrhea. Am J Med 77(1):87–94

    CAS  PubMed  Google Scholar 

  9. Adams S, Bresloff P, Mason C (1976) Pharmacological differences between the optical isomers of ibuprofen: evidence for metabolic inversion of the (−)-isomer. J Pharm Pharmacol 28(3):256–257

    CAS  PubMed  Google Scholar 

  10. Mustranta A (1992) Use of lipases in the resolution of racemic ibuprofen. Appl Microbiol Biotechnol 38(1):61–66

    CAS  PubMed  Google Scholar 

  11. Cheng H, Rogers JD, Demetriades JL, Holland SD, Seibold JR, Depuy E (1994) Pharmacokinetics and bioinversion of ibuprofen enantiomers in humans. Pharm Res 11(6):824–830

    CAS  PubMed  Google Scholar 

  12. Gaut ZN, Baruth H, Randall L, Ashley C, Paulsrud J (1975) Stereoisomeric relationships among anti-inflammatory activity, inhibition of platelet aggregation, and inhibition of prostaglandin synthetase. Prostaglandins 10(4):59–66

    CAS  PubMed  Google Scholar 

  13. Caldwell J, Hutt AJ, Fournel-Gigleux S (1988) The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochem Pharmacol 37(1):105–114

    CAS  PubMed  Google Scholar 

  14. Lee E, Williams K, Day R, Graham G, Champion D (1985) Stereoselective disposition of ibuprofen enantiomers in man. Br J Clin Pharmacol 19(5):669–674

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Geisslinger G, Schuster O, Stock K-P, Loew D, Bach G, Brune K (1990) Pharmacokinetics of S (+)-and R (−)-ibuprofen in volunteers and first clinical experience of S (+)-ibuprofen in rheumatoid arthritis. Eur J Clin Pharmacol 38(5):493–497

    CAS  PubMed  Google Scholar 

  16. Chen CS, Sih CJ (1989) General aspects and optimization of enantioselective biocatalysis in organic solvents: the use of lipases [new synthetic methods (76)]. Angew Chem Int Ed Engl 28(6):695–707

    Google Scholar 

  17. Bornscheuer UT, Kazlauskas RJ (2006) Hydrolases in organic synthesis: regio-and stereoselective biotransformations. John Wiley and Sons, New Jersey

    Google Scholar 

  18. Hadidi S, Shiri F, Norouzibazaz M (2019) A DFT study of the degradation mechanism of anticancer drug carmustine in an aqueous medium. Struct Chem 30(4):1315–1321

    CAS  Google Scholar 

  19. Shiri F, Norouzibazaz M, Yari A, Taherpour AA (2018) A DFT study of both the hydrolytic degradation and protonation of semustine in variation conditions of pH and interaction of drug with DNA nucleobases. Struct Chem 29(5):1465–1474

    CAS  Google Scholar 

  20. Hadidi S, Shiri F, Norouzibazaz M (2019) A theoretical survey of the ability of nanocarbon layers to deliver anti-cancer drug temozolomide to the target cancer cells. Curr Chem Lett 8(1):53–62

    Google Scholar 

  21. Hadidi S, Shiri F, Norouzibazaz M (2019) Conversion mechanism and isomeric preferences of the cis and trans isomers of anti-cancer medicine carmustine: a double hybrid DFT calculation. Chem Phys 522:39–43

    CAS  Google Scholar 

  22. Hadidi S, Shiri F, Norouzibazaz M (2020) Theoretical mechanistic insight into the gabapentin lactamization by an intramolecular attack: degradation model and stabilization factors. J Pharm Biomed Anal 178:112900

    CAS  PubMed  Google Scholar 

  23. Hadidi S, Shiri F, Norouzibazaz M (2020) An investigation of pregabalin lactamization process and effect of various pH on reaction: a computational insight. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.128048

    Article  Google Scholar 

  24. Ghanem A, Aboul-Enein HY (2005) Application of lipases in kinetic resolution of racemates. Chirality Pharmacol Biol Chem Conseq Mol Asymm 17(1):1–15

    CAS  Google Scholar 

  25. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    CAS  Google Scholar 

  26. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1874

    CAS  PubMed  Google Scholar 

  27. Neese F, Wennmohs F (2013) ORCA (3.0. 2)-An ab initio. DFT and semiempirical SCF-MO package,(Max-Planck-Institute for Chemical Energy Conversion Stiftstr 34–36, 45470 Mulheim ad Ruhr, Germany)

  28. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev 2(1):73–78

    CAS  Google Scholar 

  29. Jacquemin D, Mennucci B, Adamo C (2011) Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Phys Chem Chem Phys 13(38):16987–16998

    CAS  PubMed  Google Scholar 

  30. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170

    CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    CAS  PubMed  Google Scholar 

  32. Perdew J, Burke K, Ernzerhof M (1996) Phys rev lett 77:3865 (Errata: (1997) Phys Rev Lett 78 1396)

    CAS  PubMed  Google Scholar 

  33. Fukui K (1981) The path of chemical reactions-the IRC approach. Acc Chem Res 14(12):363–368

    CAS  Google Scholar 

  34. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827

    CAS  Google Scholar 

  35. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112(15):6532–6542

    CAS  Google Scholar 

  36. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem 19(4):404–417

    CAS  Google Scholar 

  37. Takano Y, Houk K (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1(1):70–77

    PubMed  Google Scholar 

  38. Chen C-S, Shieh W-R, Lu P-H, Harriman S, Chen C-Y (1991) Metabolic stereoisomeric inversion of ibuprofen in mammals. Biochim et Biophys Acta (BBA) 1078(3):411–417

    CAS  Google Scholar 

  39. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoret Chem Acc 120(1–3):215–241

    CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

    CAS  PubMed  Google Scholar 

  41. Gill G (1968) The application of the Woodward-Hoffmann orbital symmetry rules to concerted organic reactions. Q Rev Chem Soc 22(3):338–389

    CAS  Google Scholar 

  42. Sato D, Shiba T, Karaki T, Yamagata W, Nozaki T, Nakazawa T, Harada S (2017) X-Ray snapshots of a pyridoxal enzyme: a catalytic mechanism involving concerted [1,5]-hydrogen sigmatropy in methionine γ-lyase. Sci Rep 7(1):4874. https://doi.org/10.1038/s41598-017-05032-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ts Š, Ravat P, Mou Z, Kertesz M, Juríček M (2018) Cethrene: the Chameleon of Woodward-Hoffmann rules. J Organ Chem 83(8):4769–4774

    Google Scholar 

  44. Cortizo-Lacalle D, Howells CT, Pandey UK, Cameron J, Findlay NJ, Inigo AR, Tuttle T, Skabara PJ, Samuel ID (2014) Solution processable diketopyrrolopyrrole (DPP) cored small molecules with BODIPY end groups as novel donors for organic solar cells. Beilstein J Org Chem 10(1):2683–2695

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research and Computational Lab of Theoretical Chemistry and Nano Structures of Razi University, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Hadidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2020_2618_MOESM1_ESM.docx

Supplementary file1 Electronic supplementary information (ESI) available: The Cartesian coordinates of (R)-(-)-ibuprofen methyl ester, (E)-2-(4-isobutylphenyl)-1-methoxyprop-1-en-1-ol, (S)-(+)-ibuprofen methyl ester and the transition states. (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadidi, S., Shiri, F. & Norouzibazaz, M. The investigation on ibuprofen methyl ester isomerization as a fundamental stage in the preparation of antipyretic medicine (R)-ibuprofen: a computational insight. Theor Chem Acc 139, 101 (2020). https://doi.org/10.1007/s00214-020-02618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02618-8

Keywords

Navigation