Skip to main content
Log in

Electronic and transport properties of silicene-based ammonia nanosensors: an ab initio study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) formalism, the electronic and transport properties of ammonia (NH3) molecule adsorbed on armchair silicene nanoribbons (ASiNRs) are calculated. Different variants of ASiNR have been considered viz. pristine, defective, Al-doped, and P-doped. It has been observed that though the pristine ASiNR is not much sensitive to this gas molecule, but its sensitivity can be drastically enhanced by introducing defects and dopants. NH3 gas molecule exhibits stronger adsorption on ASiNRs with addition of defect and dopants. The findings are suggestive of defective and Al-doped ASiNRs being more suitable as sensors for NH3 owing to the strong adsorption and large charge transfer of the gas molecule with these ASiNR variants whereas NH3 exhibits physisorption on pristine and P-doped ASiNRs possessing minimal adsorption energy and charge transfer as well. Defective ASiNRs are found to exhibit the strongest adsorption of all resulting in higher current as well. The study indicates that modified ASiNRs are potential candidates for nanoelectronic NH3 gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aghaei SM, Calizo I (2015) Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes. J Appl Phys 118:104304

    Article  Google Scholar 

  2. Takeda K, Shirashi K (1994) Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B 50:14916

    Article  CAS  Google Scholar 

  3. Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804

    Article  CAS  Google Scholar 

  4. Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 12:3507–3511

    Article  CAS  Google Scholar 

  5. Vogt P, De Padova DP, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Lay GL (2012) Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys Rev Lett 108:155501

    Article  Google Scholar 

  6. Osborn TH, Farajian AA, Pupysheva OV, Aga RS, Voon LC (2011) Ab initio simulations of silicene hydrogenation. Chem Phys Lett 511(1):101–105

    Article  CAS  Google Scholar 

  7. Spencer MJS Morishita T (2016) Silicene, Springer Series in Materials Science Volume 235. Switzerland

  8. Voon LC (2016) Physical properties of silicene, In: Spencer MJS, Morishita T (eds.), Silicene, Springer Series in Materials Science 235, Switzerland pp 3–34

  9. Peplow M (2015) Silicene makes its transistor debut. Nature 518(7537):17–18

    Article  CAS  Google Scholar 

  10. Zha D, Chen C, Wu J (2015) Electronic transport through a silicene-based zigzag and armchair junction. Solid State Commun 219:21–24

    Article  CAS  Google Scholar 

  11. Nakano H, Ohashi M (2016) Soft chemical synthesis of functionalized silicene, In: Spencer MJS, Morishita T (eds.), Silicene, Springer Series in Materials Science 235, Switzerland pp 85–106

  12. Spencer MJS, Morishita T (2016) Theoretical studies of functionalised silicene, In: Spencer MJS, Morishita T (eds.), Silicene, Springer Series in Materials Science 235, Switzerland pp 107–128

  13. Houssa M, van den Broek B, Scalise E, Pourtois G, Afanasev VV, Stesmans A (2013) An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys Chem Chem Phys 15:3702–3705

    Article  CAS  Google Scholar 

  14. Drummond ND, Zólyomi V, Fal’ko VI (2012) Electrically tunable band gap in silicene. Phys Rev B Condens Matter 85:075423

    Article  Google Scholar 

  15. Kaloni TP, Schreckenbach G, Freund MS (2014) Large enhancement and tunable band gap in silicene by small organic molecule adsorption. J Phys Chem C 118:23361–23367

    Article  CAS  Google Scholar 

  16. Denis PA (2015) Stacked functionalized silicene: a powerful system to adjust the electronic structure of silicene. Phys Chem Chem Phys 17:5393–5402

    Article  CAS  Google Scholar 

  17. Kaloni TP, Singh N, Schwingenschlögl U (2014) Prediction of a quantum anomalous hall state in co-decorated silicene. Phys Rev B Condens Matter 89:035409

    Article  Google Scholar 

  18. Prasongkit J, Amorim RG, Chakraborty S, Ahuja R, Scheicher RH, Amornkitbamrung V (2015) Highly sensitive and selective gas detection based on silicene. J Phys Chem C 119:16934–16940

    Article  CAS  Google Scholar 

  19. Feng J-W, Liu Y-J, Wang H-X, Zhao J-X, Cai Q-H, Wang X-Z (2014) Gas adsorption on silicene: a theoretical study. Comput Mater Sci 87:218–226

    Article  CAS  Google Scholar 

  20. Iordanidou K, Houssa M, Broek BVD, Pourtois G, Afanasev VV, Stesmans A (2016) Impact of point defects on the electronic and transport properties of silicene nanoribbons. J Phys Condens Matter 28(3):035302

    Article  CAS  Google Scholar 

  21. Du Y, Xu X (2016) Adsorption of molecules on silicene. In: Spencer MJS, Morishita T (eds.), Silicene, Springer Series in Materials Science 235, Switzerland pp 215–242

  22. Lin X, Ni J (2012) Much stronger binding of metal adatoms to silicene than to graphene: a first-principles study. Phys Rev B 86:075440

    Article  Google Scholar 

  23. Noor-A-Alam M, Kim HJ, Shin YH (2015) Hydrogen and fluorine co-decorated silicene: a first principles study of piezoelectric properties. J Appl Phys 117:224304

    Article  Google Scholar 

  24. Gao N, Zheng WT, Jiang Q (2012) Density functional theory calculations for two-dimensional silicene with halogen functionalization. Phys Chem Chem Phys 14(1):257–261

    Article  CAS  Google Scholar 

  25. Sahin H, Peeters FM (2013) Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys Rev B 87:085423

    Article  Google Scholar 

  26. Friedlein R, Fleurence A, Sadowski JT (2013) Tuning of silicene-substrate interactions with potassium adsorption. Appl Phys Lett 102:221603

    Article  Google Scholar 

  27. Tritsaris GA, Kaxiras E, Meng S, Wang E (2013) Adsorption and diffusion of lithium on layered silicon for li-ion storage. Nano Lett 13(5):2258–2263

    Article  CAS  Google Scholar 

  28. Wang J, Li J, Li S-S, Liu Y (2013) Hydrogen storage by metalized silicene and silicane. J Appl Phys 114:124309

    Article  Google Scholar 

  29. Li C, Yang S, Li S-S, Xia J-B, Li J (2013) Au-decorated silicene: design of a high-activity catalyst toward CO oxidation. J Phys Chem C 117:483–488

    Article  CAS  Google Scholar 

  30. Sivek J, Sahin H, Partoens B, Peeters FM (2013) Adsorption and absorption of boron, nitrogen, aluminium, and phosphorus on silicene: stability and electronic and phonon properties. Phys Rev B 87:085444

    Article  Google Scholar 

  31. Ni Z, Zhong H, Jiang X, Quhe R, Luo G, Wang Y, Ye M, Yang J, Shi J, Lu J (2014) Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. Nano 6:7609–7618

    CAS  Google Scholar 

  32. Huang B, Xiang HJ, Wei SH (2013) Chemical functionalization of silicene: spontaneous structural transition and exotic electronic properties. Phys Rev Lett 111(14):145502

  33. Osborn TH, Farajian AA (2014) Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution. Nano Res 7:945

    Article  CAS  Google Scholar 

  34. Singh S, Sarkar AD, Singh B, Kaur I (2017) Electronic and transport behavior of doped armchair silicene nanoribbons exhibiting negative differential resistance and its FET performance. RSC Adv 7:12783

    Article  CAS  Google Scholar 

  35. Kara A, Enriquez H, Seitsonen AP, Voon LC, Vizzini S, Aufray B, Oughaddou H (2012) A review on silicene-new candidate for electronics. Sci Rep 67:1–18

    Article  CAS  Google Scholar 

  36. Hu W, Wu X, Li Z, Yang J (2013) Helium separation via porous silicene based ultimate membrane. Nano 5(19):9062–9066

    CAS  Google Scholar 

  37. Hu W, Wu X, Li Z, Yang J (2013) Porous silicene as a hydrogen purification membrane. Phys Chem Chem Phys 15:5753–5757

    Article  CAS  Google Scholar 

  38. Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401

    Article  Google Scholar 

  39. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407

    Article  Google Scholar 

  40. QuantumWise. Copenhagen, Denmark: Atomistix Toolkit version 2015.0. Available from: http://www.quantumwise.com

  41. Perdew JP, Zunger A (1981) Self-interaction corrections to density functional theory approximations for many electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  42. Srivastava P, Jaiswal NK, Tripathi GK (2014) Chlorine sensing properties of zigzag boron nitride nanoribbons. Solid State Commun 185:41–46

    Article  CAS  Google Scholar 

  43. Yamacli S (2014) Comparison of the electronic transport properties of metallic graphene and silicene nanoribbons. J Nanopart Res 16:2576

    Article  Google Scholar 

  44. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504

    Article  Google Scholar 

  45. Srivastava P, Jaiswal NK, Sharma V (2014) First-principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules. Superlattice Microst 73:350–358

    Article  CAS  Google Scholar 

  46. Chowdhury R, Scarpa F, Adhikari S (2012) Molecular-scale bio-sensing using armchair graphene. J Appl Phys 112:014905

    Article  Google Scholar 

  47. Abadir GB, Walus K, Pulfrey DL (2009) Basis set choice for DFT/NEGF simulations of carbon nanotubes. J Comp Electron 8:1–9

    Article  CAS  Google Scholar 

  48. Ding Y, Nia J (2009) Electronic structures of silicon nanoribbons. Appl Phys Lett 95:083115

    Article  Google Scholar 

  49. Wella SA, Syaputra M, Wungu TDK, Suprijadi (2016) The study of electronic structure and properties of silicene for gas sensor application. AIP Conf Proc 1719:030039

  50. Dávila ME, Marele A, De Padova P, Montero I, Hennies F, Pietzsch A, Shariati MN, Gómez-Rodríguez JM, Lay GL (2012) Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag(110). Nanotechnology 23:385703

    Article  Google Scholar 

  51. Jamal GR, Chowdhury MM, Rahman F, Rahman MA, Shabnaz S, Habiba U (2015) Simulation of graphene nanoribbon based gas sensor. Journal of Nanoscience and Nanoengineering 1(2):66–73

    Google Scholar 

  52. Aghaei SM, Monshi MM, Calizo I (2016) Highly sensitive gas sensors based on silicene nanoribbons. arXiv preprint arXiv:1608.07508

  53. Aghaei SM, Monshi MM, Calizo I (2016) A theoretical study of gas adsorption on silicene nanoribbons and its application as a highly sensitive molecule sensor. RSC Adv 6:94417–94428

    Article  CAS  Google Scholar 

  54. Wei X-L, Chen Y-P, Liu W-L, Zhong J-X (2012) Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons. Phys Lett A 376:559–562

    Article  CAS  Google Scholar 

  55. Coung NT, Tien NM (2016) First-principles studies of CO2 and NH3 gas molecules adsorbed on graphene nanoribbons. J Sci: Math Phys 32(2):15–21

    Google Scholar 

  56. Poole CP Jr., Owens FJ (2003) Introduction to nanotechnology: John Wiley & Sons

Download references

Funding

We gratefully acknowledge funding support from Department of Science and Technology (DST) of India—Promotion of University Research and Scientific Excellence (PURSE) scheme. The authors would also like to thank Quantumwise for their valuable support. Walia GK wants to acknowledge University Grants Commission, New Delhi, India, for Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurleen Kaur Walia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walia, G.K., Randhawa, D.K.K. Electronic and transport properties of silicene-based ammonia nanosensors: an ab initio study. Struct Chem 29, 257–265 (2018). https://doi.org/10.1007/s11224-017-1025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1025-9

Keywords

Navigation