Skip to main content
Log in

Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Adsorption of toxic hydrogen cyanide gas (HCN) on armchair silicene nanoribbons (ASiNRs) is investigated by the first principles method using density functional theory (DFT) to compute geometric, electronic, and transport properties. Two variants of ASiNRs are considered: pristine ASiNR (P-ASiNR) and defective ASiNR (D-ASiNR), which is created by introducing a vacancy in P-ASiNR by removal of a Si atom. Total energy optimizations are used to find the most stable structures. The calculated results reveal that although HCN is physisorbed in both variants, sensitivity in the case of D-ASiNR is sufficiently enhanced owing to more adsorption energy and charge transfer between the ASiNR-gas complex. Also, the inspection of current-voltage characteristics demonstrates that the introduction of defect has considerably increased the conductivity of ASiNR. Hence, D-ASiNR may be used as a promising sensor for HCN gas.

Transmission eigenstates of (a) Pristine ASiNR (b) Defective ASiNR after HCN adsorption

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H (2012) Small 8:2994

    Article  CAS  PubMed  Google Scholar 

  2. Late DJ, Huang Y-K, Liu B, Acharya J, Shirodkar SN, Luo J, Yan A, Charles D, Waghmare UV, Dravid VP (2013) ACS Nano 7:4879

    Article  CAS  PubMed  Google Scholar 

  3. Huo N, Yang S, Wei Z, Li S-S, Xia J-B, Li J (2014) Sci Rep 4:5209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Brien M, Lee K, Morrish R, Berner NC, McEvoy N, Wolden CA, Duesberg GS (2014) Chem Phys Lett 615:6

    Article  CAS  Google Scholar 

  5. Kou L, Frauenheim T, Chen C (2014) J Phys Chem Lett 5:2675

    Article  CAS  PubMed  Google Scholar 

  6. Abbas AN, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou C (2015) ACS Nano 9:5618

    Article  CAS  PubMed  Google Scholar 

  7. Peyghan AA, Noei M, Yourdkhani S (2013) Superlattice Microst 59:115

    Article  CAS  Google Scholar 

  8. Behmagham F, Vessally E, Massoumi B, Hosseinian A, Edjlali L (2016) Superlattice Microst 100:350

    Article  CAS  Google Scholar 

  9. Nagarajan V, Chandiramouli R (2017) Superlattice Microst 101:160

    Article  CAS  Google Scholar 

  10. Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Nano Lett 12:113

    Article  CAS  PubMed  Google Scholar 

  11. Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Nat Nanotechnol 10:227

    Article  CAS  PubMed  Google Scholar 

  12. Tsai WF, Huang C-Y, Chang T-R, Lin H, Jeng H-T, Bansil A (2013) Nat Commun 4:1500

    Article  CAS  PubMed  Google Scholar 

  13. Sadeghi H, Bailey S, Lambert CJ (2014) Appl Phys Lett 104:103104

    Article  CAS  Google Scholar 

  14. Gao N, Zheng WT, Jiang Q (2012) Phys Chem Chem Phys 14:257

    Article  CAS  PubMed  Google Scholar 

  15. Lopez-Bezanilla A (2014) J Phys Chem C 118:18788

    Article  CAS  Google Scholar 

  16. Gao N, Li JC, Jiang Q (2014) Chem Phys Lett 592:222

    Article  CAS  Google Scholar 

  17. Pan F, Wang Y, Jiang K, Ni Z, Ma J, Zheng J, Quhe R, Shi J, Yang J, Chen C, Lu J (2015) Sci Rep 5:9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aghaei SM, Monshi MM, Torres I, Calizo I (2016) RSC Adv 6:17046

    Article  CAS  Google Scholar 

  19. Aghaei SM, Calizo I (2015a) J Appl Phys 118:104304

    Article  CAS  Google Scholar 

  20. Aghaei SM, Calizo I (2015b) In: Proceeding of IEEE SoutheastCon (SECon-2015), Fort Lauderdale, 9–12 April 2015, pp 1–6

  21. Kara A, Enriquez H, Seitsonen AP, Voon LC, Vizzini S, Aufray B, Oughaddou H (2012) Sci Rep 67:1

    Article  CAS  Google Scholar 

  22. Vogt P, De Padova DP, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Lay GL (2012) Phys Rev Lett 108:155501

    Article  CAS  PubMed  Google Scholar 

  23. Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu CC, Zhong H, Han N, Lu J, Yao Y, Wu K (2016) Prog Mater Sci 83:24

    Article  CAS  Google Scholar 

  24. Ding Y, Nia J (2009) Appl Phys Lett 95:083115

    Article  CAS  Google Scholar 

  25. Spencer MJS, Morishita T (2016) Silicene. In: Springer series in materials science, vol 235. Springer, Cham

  26. Drummond ND, Zolyomi V, Fal’ko VI (2012) Phys Rev B Condens Matter 85:075423

    Article  CAS  Google Scholar 

  27. Amorim RG, Scheicher RH (2015) Nanotechnol 26:154002

    Article  CAS  Google Scholar 

  28. Walia GK, Randhawa DKK (2018a) Struct Chem 29:257. https://doi.org/10.1007/s11224-017-1025-9

    Article  CAS  Google Scholar 

  29. Walia GK, Randhawa DKK (2018b) Surf Sci 670:33. https://doi.org/10.1016/j.susc.2017.12.013

    Article  CAS  Google Scholar 

  30. Walia GK, Randhawa DKK (2018c) J Mol Model 24:94. https://doi.org/10.1007/s00894-018-3631-x

    Article  CAS  PubMed  Google Scholar 

  31. Walia GK, Randhawa DKK (2018d) Struct Chem. https://doi.org/10.1007/s11224-018-1170-9

  32. Ansell M, Lewis FA (1970) J Forensic Med 17:148

    CAS  PubMed  Google Scholar 

  33. Aitken D, West D, Smith F, Poznanski W, Cowan J, Hurtig J, Peterson E, Benoit B (1977) Can Anaesth Soc J 24:651

    Article  CAS  PubMed  Google Scholar 

  34. Rastegar SF, Peyghan AA, Hadipour NL (2013) Appl Surf Sci 265:412

    Article  CAS  Google Scholar 

  35. Zhao M, Yang F, Xue Y, Xiao D, Guo Y (2014) J Mol Model 20:2214

    Article  CAS  PubMed  Google Scholar 

  36. Beheshtian J, Peyghan AA, Bagheri Z, Tabar MB (2014) Struct Chem 25:1

    Article  CAS  Google Scholar 

  37. Wu RQ, Yang M, Lu YH, Feng YP (2008) J Phys Chem C 112:15985

    Article  CAS  Google Scholar 

  38. Wang R, Zhang D, Liu Y, Liu C (2009) Nanotechnology 20:505704

    Article  CAS  PubMed  Google Scholar 

  39. Beheshtian J, Peyghan AA, Bagheri Z (2013) J Mol Model 19:2197

    Article  CAS  PubMed  Google Scholar 

  40. Aguilar M, Farran A, Marti V (1997) J Chromatogr A 778:397

    Article  CAS  Google Scholar 

  41. Christison TT, Rohrer JS (2007) J Chromatogr 1155:31

    Article  CAS  Google Scholar 

  42. Shan D, Mousty C, Cosnier S (2004) Anal Chem 76:178

    Article  CAS  PubMed  Google Scholar 

  43. Lindsay AE, O’Hare D (2006) Anal Chim Acta 558:158

    Article  CAS  Google Scholar 

  44. Lee K-S, Kim H-J, Kim G-H, Shin I, Hong J-I (2008) Org Lett 10:49

    Article  CAS  PubMed  Google Scholar 

  45. Chung YM, Raman B, Kim D-S, Ahn KH (2006) Chem Commun 2:186

    Article  Google Scholar 

  46. Ekmekci Z, Yilmaz MD, Akkaya EU (2008) Org Lett 10:461

    Article  CAS  PubMed  Google Scholar 

  47. Jin WJ, Fernandez-Arguelles MT, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2005) Chem Commun 7:883

    Article  Google Scholar 

  48. Jin WJ, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2004) Anal Chim Acta 522:1

    Article  CAS  Google Scholar 

  49. Touceda-Varela A, Stevenson EI, Galve-Gasion JA, Dryden DTF, Mareque-Rivas JC (2008) Chem Commun 17:1998

    Article  CAS  Google Scholar 

  50. Jawad SM, Alder JF (1991) Anal Chim Acta 246:259

    Article  CAS  Google Scholar 

  51. Yang M, He J, Hu X, Yan C, Cheng Z (2011) Environ Sci Technol 45:6088

    Article  CAS  PubMed  Google Scholar 

  52. Yang M, He J, Hu X, Yan C, Cheng Z, Zhao Y, Zuo G (2011) Sensors Actuators B 155:692

    Article  CAS  Google Scholar 

  53. Yang M, He J, Hu X, Yan C, Cheng Z (2013) Analyst 138:1758

    Article  CAS  PubMed  Google Scholar 

  54. QuantumWise (2015) Atomistix Toolkit version 2015.0. QuantumWise, Copenhagen. Available from http://www.quantumwise.com

  55. Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401

    Article  CAS  Google Scholar 

  56. Taylor J, Guo H, Wang J (2001) Phys Rev B 63:245407

    Article  CAS  Google Scholar 

  57. Zhao Q, Nardelli MB, Lu W, Bernholc J (2005) Nano Lett 5:847

    Article  CAS  PubMed  Google Scholar 

  58. Abadir GB, Walus K, Pulfrey DL (2009) J Comput Electron 8:1

    Article  CAS  Google Scholar 

  59. Dávila ME, Marele A, De Padova P, Montero I, Hennies F, Pietzsch A, Shariati MN, Gómez-Rodríguez JM, Lay GL (2012) Nanotechnology 23:385703

    Article  CAS  PubMed  Google Scholar 

  60. Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, New York

  61. Büttiker M, Imey Y, Landauer R, Pinhas S (1985) Phys Rev B 31:6207

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Quantumwise for their valuable support. The corresponding author wants to acknowledge the University Grants Commission, New Delhi, India, for Senior Research Fellowship. This study was funded by the Department of Science & Technology (DST) of India - Promotion of University Research and Scientific Excellence (PURSE) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurleen Kaur Walia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walia, G.K., Randhawa, D.K.K. Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons. J Mol Model 24, 242 (2018). https://doi.org/10.1007/s00894-018-3782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3782-9

Keywords

Navigation