Skip to main content

Advertisement

Log in

Principal components of localization-delocalization matrices: new descriptors for modeling biological activities of organic compounds. Part I: mosquito insecticides and repellents

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Malaria is a devastating disease affecting hundreds of millions of people worldwide. Computational chemistry is on the front lines of the development of new and more effective compounds for reducing the transmission of the malaria parasite. The newly developed localization-delocalization matrices and the principal component eigenvectors derived from the localization-delocalization matrices have been shown previously to be good descriptors for relating molecular electronic structure to molecular properties/activities. The principal components of the localization-delocalization matrices were successfully used to build predictive models of the toxicities of semiochemicals to mosquitoes and the electroantennographic responses of mosquitoes to the electronic structures of repellents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization (WHO) 2016 World Malaria Report

  2. Eisele TP, Larsen D, Steketee RW (2010) Protective efficacy of interventions for preventing malaria mortality in children in Plasmodium falciparum endemic areas Int J Epidemiol 39(suppl 1):i88–i101

    Article  Google Scholar 

  3. Wright CW (2005) Traditional antimalarials and the development of novel antimalarial drugs J Ethnopharmacol 100(1):67–71

    Article  CAS  Google Scholar 

  4. Liu N (2015) Insecticide resistance in mosquitoes: impact, mechanisms, and research directions Annu Rev Entomol 60:537–559

    Article  CAS  Google Scholar 

  5. Wichmann O, Muehlen M, Gruss H, Mockenhaupt FP, Suttorp N, Jelinek T (2004) Malarone treatment failure not associated with previously described mutations in the cytochrome b gene Malar J 3(1):14

    Article  Google Scholar 

  6. Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, Von Seidlein L (2010) Artemisinin resistance: current status and scenarios for containment. Nature reviews Microbiology 8(4):272

    CAS  Google Scholar 

  7. Wu X, Lu Y, Zhou S, Chen L, Xu B (2016) Impact of climate change on human infectious diseases: empirical evidence and human adaptation Environ Int 86:14–23

    Article  Google Scholar 

  8. Miszta PC, Basak S, Natarajan R, Nowak W (2013) How computational studies of mosquito repellents contribute to the control of vector-borne diseases Curr Comput Aided Drug Des 9(3):300–307

    Article  CAS  Google Scholar 

  9. Tsitsanou KE, Thireou T, Drakou CE, Koussis K, Keramioti MV, Leonidas DD, Zographos SE (2012) Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents Cell Mol Life Sci 69(2):283–297

    Article  CAS  Google Scholar 

  10. Katritzky AR, Wang Z, Slavov S, Tsikolia M, Dobchev D, Akhmedov NG, Linthicum KJ (2008) Synthesis and bioassay of improved mosquito repellents predicted from chemical structure Proc Natl Acad Sci 105(21):7359–7364

    Article  CAS  Google Scholar 

  11. Ma D, Bhattacharjee AK, Gupta RK, Karle JM (1999) Predicting mosquito repellent potency of N, N-diethyl-m-toluamide (DEET) analogs from molecular electronic properties Am J Trop Med Hyg 60(1):1–6

    Article  CAS  Google Scholar 

  12. Song J, Wang Z, Findlater A, Han Z, Jiang Z, Chen J, Hyde S (2013) Terpenoid mosquito repellents: a combined DFT and QSAR study Bioorg Med Chem Lett 23(5):1245–1248

    Article  CAS  Google Scholar 

  13. Silverman, Richard B., and Mark W. Holladay. The organic chemistry of drug design and drug action. Academic Press, 2014

  14. Matta CF, Arabi AA, Weaver DF (2010) The bioisosteric similarity of the tetrazole and carboxylate anions: clues from the topologies of the electrostatic potential and of the electron density Eur J Med Chem 45(5):1868–1872

    Article  CAS  Google Scholar 

  15. Matta CF, Arabi AA (2011) Electron-density descriptors as predictors in quantitative structure—activity/property relationships and drug design Future Med Chem 3(8):969–994

    Article  CAS  Google Scholar 

  16. O’Brien SE, Popelier PLA (2002) Quantum topological molecular similarity. Part 4: a QSAR study of cell growth inhibitory properties of substituted (E)-1-Phenylbut-1-en-3-ones J Chem Soc Perkin Trans 2:478–483

    Article  Google Scholar 

  17. Popelier PLA, Chaudry UA, Smith PJ (2002) Quantum topological molecular similarity. Part 5. Further development with an application to the toxicity of polychlorinated dibenzo-p-dioxins (PCDDs) J Chem Soc Perkin Trans 2:1231–1237

    Article  Google Scholar 

  18. Bader, R.F.W. Atoms in molecules. John Wiley and Sons, Ltd, 1990

  19. Matta, Chérif F., and Russell J. Boyd, Eds. The quantum theory of atoms in molecules: from solid state to DNA and drug design. John Wiley and Sons, 2007

  20. Matta, Chérif F., and Russell J. Boyd. An introduction to the quantum theory of atoms in molecules., Chapter 1, The quantum theory of atoms in molecules: from solid state to DNA and drug

  21. Huang L, Massa L, Karle J (2009) Kernel energy method applied to vesicular stomatitis virus nucleoprotein Proc Natl Acad Sci 106(6):1731–1736

    Article  CAS  Google Scholar 

  22. Huang L, Massa L, Karle J (2005) Kernel energy method illustrated with peptides Int J Quantum Chem 103(6):808–817

    Article  CAS  Google Scholar 

  23. Huang L, Krupkin M, Bashan A, Yonath A, Massa L (2013) Protoribosome by quantum kernel energy method Proc Natl Acad Sci 110(37):14900–14905

    Article  CAS  Google Scholar 

  24. Timm MJ, Matta CF, Massa L, Huang L (2014) The localization–delocalization matrix and the electron-density-weighted connectivity matrix of a finite graphene nanoribbon reconstructed from kernel fragments J Phys Chem A 118(47):11304–11316

    Article  CAS  Google Scholar 

  25. Pelosi P (1996) Perireceptor events in olfaction Dev Neurobiol 30(1):3–19

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  27. Keith TA (2013) AIMAll (Version 15.09.12). TK Gristmill Software, Overland Park

    Google Scholar 

  28. Sumar I, Cook R, Ayers PW, Matta CF (2015) AIMLDM: a program to generate and analyze electron localization–delocalization matrices (LDMs) Comput Theor Chem 1070:55–67

    Article  CAS  Google Scholar 

  29. Xu W, Cornel AJ, Leal WS (2010) Odorant-binding proteins of the malaria mosquito Anopheles funestus sensu stricto PLoS One 5(10):e15403

    Article  Google Scholar 

  30. Xu P, Choo YM, De La Rosa A, Leal WS (2014) Mosquito odorant receptor for DEET and methyl jasmonate Proc Natl Acad Sci 111(46):16592–16597

    Article  CAS  Google Scholar 

  31. Bader RFW, Stephens ME (1975) Spatial localization of the electronic pair and number distributions in molecules J Am Chem Soc 97(26):7391–7399

    Article  CAS  Google Scholar 

  32. Bader RFW, Johnson S, Tang TH, Popelier PLA (1996) The electron pair J Phys Chem 100(38):15398–15415

    Article  CAS  Google Scholar 

  33. Bader RFW, Streitwieser A, Neuhaus A, Laidig KE, Speers P (1996) Electron delocalization and the Fermi hole J Am Chem Soc 118(21):4959–4965

    Article  CAS  Google Scholar 

  34. Matta CF (2014) Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization, and delocalization matrices, and the electrostatic potential J Comput Chem 35:1165–1198

    Article  CAS  Google Scholar 

  35. Matta CF (2014) Localization−delocalization matrices and electron density-weighted adjacency matrices: new electronic fingerprinting tools for medicinal computational chemistry Future Med Chem 6:1475–1479

    Article  CAS  Google Scholar 

  36. Sumar I, Ayers PW, Matta CF (2014) Electron localization and delocalization matrices in the prediction of pKa’s and UV-wavelengths of maximum absorbance of p-benzoic acids and the definition of superatoms in molecules Chem Phys Lett 612:190–197

    Article  CAS  Google Scholar 

  37. Melville JL, Riley JF, Hirst JD (2007) Similarity by compression J Chem Inf Model 47(1):25–33

    Article  CAS  Google Scholar 

  38. Malinowski, E. R. (2002). Factor analysis in chemistry. Wiley

  39. Kaufman PE, Mann RS, Butler JF (2010) Evaluation of semiochemical toxicity to Aedes aegypti, Ae. albopictus and Anopheles quadrimaculatus (Diptera: Culicidae) Pest Manag Sci 66(5):497–504

    Article  CAS  Google Scholar 

  40. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes Annu Rev Entomol 58:373–391

    Article  CAS  Google Scholar 

  41. Drakou CE, Tsitsanou KE, Potamitis C, Fessas D, Zervou M, Zographos SE (2017) The crystal structure of the AgamOBP1• Icaridin complex reveals alternative binding modes and stereoselective repellent recognition Cell Mol Life Sci 74(2):319–338

    Article  CAS  Google Scholar 

  42. Vermunt JK, Magidson J (2002) Latent class cluster analysis Appl Latent Class Anal 11:89–106

    Article  Google Scholar 

  43. Hérent MF, Collin S, Pelosi P (1995) Affinities of nutty and green-smelling pyrazines and thiazoles to odorant-binding proteins, in relation with their lipophilicity Chem Senses 20(6):601–608

    Article  Google Scholar 

  44. Pevsner J, Hou V, Snowman AM, Snyder SH (1990) Odorant-binding protein. Characterization of ligand binding J Biol Chem 265(11):6118–6125

    CAS  Google Scholar 

  45. Cronin D, Mark T (2006) The role of hydrophobicity in toxicity prediction Curr Comput Aided Drug Des 2(4):405–413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Cherif Matta (Mount Saint Vincent University) and Michael Alford for useful discussions. Funding for some aspects of this work was through an internal IR&D from TDA Research, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Cook.

Ethics declarations

Funding

Funding was provided by Internal IR & D funds by TDA Research and no human or animal test subjects we used in this research.

Conflict of interest

There were no potential conflicts of interest.

Additional information

This paper is dedicated to Professor Lou Massa on the occasion of his Festschrift.

Electronic supplementary material

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, R.L. Principal components of localization-delocalization matrices: new descriptors for modeling biological activities of organic compounds. Part I: mosquito insecticides and repellents. Struct Chem 28, 1525–1535 (2017). https://doi.org/10.1007/s11224-017-0998-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0998-8

Keywords

Navigation