Skip to main content

Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spaces

  • Chapter
  • First Online:
Handbook of Variational Methods for Nonlinear Geometric Data

Abstract

Very generally speaking, statistical data analysis builds on descriptors reflecting data distributions. In a linear context, well studied nonparametric descriptors are means and PCs (principal components, the eigenorientations of covariance matrices). In 1963, T.W. Anderson derived his celebrated result of joint asymptotic normality of PCs under very general conditions. As means and PCs can also be defined geometrically, there have been various generalizations of PC analysis (PCA) proposed for manifolds and manifold stratified spaces. These generalizations play an increasingly important role in statistical dimension reduction of non-Euclidean data. We review their beginnings from Procrustes analysis (GPA), over principal geodesic analysis (PGA) and geodesic PCA (GPCA) to principal nested spheres (PNS), horizontal PCA, barycentric subspace analysis (BSA) and backward nested descriptors analysis (BNDA). Along with this, we review the current state of the art of their asymptotic statistical theory and applications for statistical testing, including open challenges, e.g. new insights into scenarios of nonstandard rates and asymptotic nonnormality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T.: Asymptotic theory for principal component analysis. Ann. Math. Statist. 34(1), 122–148 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barden, D., Le, H., Owen, M.: Central limit theorems for Fréchet means in the space of phylogenetic trees. Electron. J. Probab. 18(25), 1–25 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Barden, D., Le, H., Owen, M.: Limiting behaviour of fréchet means in the space of phylogenetic trees. Ann. Inst. Stat. Math. 70(1), 99–129 (2018)

    Article  MATH  Google Scholar 

  4. Bhattacharya, R., Lin, L.: Omnibus CLTs for Fréchet means and nonparametric inference on non-Euclidean spaces. Proc. Am. Math. Soc. 145(1), 413–428 (2017)

    Article  MATH  Google Scholar 

  5. Bhattacharya, R.N., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds I. Ann. Stat. 31(1), 1–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhattacharya, R.N., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds II. Ann. Stat. 33(3), 1225–1259 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Billera, L., Holmes, S., Vogtmann, K.: Geometry of the space of phylogenetic trees. Adv. Appl. Math. 27(4), 733–767 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Billingsley, P.: Probability and Measure, vol. 939. Wiley, London (2012)

    MATH  Google Scholar 

  9. Bredon, G.E.: Introduction to Compact Transformation Groups. Pure and Applied Mathematics, vol. 46. Academic Press, New York (1972)

    Google Scholar 

  10. Cheng, G.: Moment consistency of the exchangeably weighted bootstrap for semiparametric m-estimation. Scand. J. Stat. 42(3), 665–684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, A.W.: Asymptotic theory for principal component analysis: non-normal case. Aust. J. Stat. 19, 206–212 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application, vol. 1. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  13. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (2014)

    MATH  Google Scholar 

  14. Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  15. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  16. Eltzner, B., Huckemann, S.: Bootstrapping descriptors for non-Euclidean data. In: Geometric Science of Information 2017 Proceedings, pp. 12–19. Springer, Berlin (2017)

    Google Scholar 

  17. Eltzner, B., Huckemann, S.F.: A smeary central limit theorem for manifolds with application to high dimensional spheres. Ann. Stat. 47, 3360–3381 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eltzner, B., Huckemann, S., Mardia, K.V.: Torus principal component analysis with applications to RNA structure. Ann. Appl. Statist. 12(2), 1332–1359 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eltzner, B., Galaz-García, F., Huckemann, S.F., Tuschmann, W.: Stability of the cut locus and a central limit theorem for Fréchet means of Riemannian manifolds (2019). arXiv: 1909.00410

    Google Scholar 

  20. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.C.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imag. 23(8), 995–1005 (2004)

    Article  Google Scholar 

  21. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincare 10(4), 215–310 (1948)

    MathSciNet  MATH  Google Scholar 

  22. Goresky, M., MacPherson, R.: Stratified Morse Theory. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  23. Gower, J.C.: Generalized Procrustes analysis. Psychometrika 40, 33–51 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hotz, T., Huckemann, S.: Intrinsic means on the circle: uniqueness, locus and asymptotics. Ann. Inst. Stat. Math. 67(1), 177–193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hotz, T., Huckemann, S., Le, H., Marron, J.S., Mattingly, J., Miller, E., Nolen, J., Owen, M., Patrangenaru, V., Skwerer, S.: Sticky central limit theorems on open books. Ann. Appl. Probab. 23(6), 2238–2258 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huckemann, S.: Inference on 3D Procrustes means: Tree boles growth, rank-deficient diffusion tensors and perturbation models. Scand. J. Stat. 38(3), 424–446 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Huckemann, S.: Intrinsic inference on the mean geodesic of planar shapes and tree discrimination by leaf growth. Ann. Stat. 39(2), 1098–1124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huckemann, S.: Manifold stability and the central limit theorem for mean shape. In: Gusnanto, A., Mardia, K.V., Fallaize, C.J. (eds.) Proceedings of the 30th LASR Workshop, pp. 99–103. Leeds University Press, Leeds (2011)

    Google Scholar 

  29. Huckemann, S.: On the meaning of mean shape: Manifold stability, locus and the two sample test. Ann. Inst. Stat. Math. 64(6), 1227–1259 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huckemann, S., Eltzner, B.: Polysphere PCA with applications. In: Proceedings of the Leeds Annual Statistical Research (LASR) Workshop, pp. 51–55. Leeds University Press, Leeds (2015)

    Google Scholar 

  31. Huckemann, S.F., Eltzner, B.: Backward nested descriptors asymptotics with inference on stem cell differentiation. Ann. Stat. 46(5), 1994–2019 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions (with discussion). Stat. Sin. 20(1), 1–100 (2010)

    MATH  Google Scholar 

  33. Huckemann, S., Mattingly, J.C., Miller, E., Nolen, J.: Sticky central limit theorems at isolated hyperbolic planar singularities. Electron. J. Probab. 20(78), 1–34 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Jung, S., Foskey, M., Marron, J.S.: Principal arc analysis on direct product manifolds. Ann. Appl. Stat. 5, 578–603 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jung, S., Dryden, I.L., Marron, J.S.: Analysis of principal nested spheres. Biometrika 99(3), 551–568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kendall, D.G.: The diffusion of shape. Adv. Appl. Probab. 9, 428–430 (1977)

    Article  Google Scholar 

  37. Kendall, W.S., Le, H.: Limit theorems for empirical Fréchet means of independent and non-identically distributed manifold-valued random variables. Braz. J. Probab. Stat. 25(3), 323–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, Chichester (1999)

    Book  MATH  Google Scholar 

  39. Le, H., Barden, D.: On the measure of the cut locus of a Fréchet mean. Bull. Lond. Math. Soc. 46(4), 698–708 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  41. McKilliam, R.G., Quinn, B.G., Clarkson, I.V.L.: Direction estimation by minimum squared arc length. IEEE Trans. Signal Process. 60(5), 2115–2124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nye, T.M., Tang, X., Weyenberg, G., Yoshida, R.: Principal component analysis and the locus of the fréchet mean in the space of phylogenetic trees. Biometrika 104(4), 901–922 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pennec, X.: Barycentric subspace analysis on manifolds. Ann. Stat. 46(6A), 2711–2746 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pizer, S.M., Jung, S., Goswami, D., Vicory, J., Zhao, X., Chaudhuri, R., Damon, J.N., Huckemann, S., Marron, J.: Nested sphere statistics of skeletal models. In: Innovations for Shape Analysis, pp. 93–115. Springer, Berlin (2013)

    Google Scholar 

  45. Romano, J.P., Lehmann, E.L.: Testing Statistical Hypotheses. Springer, Berlin (2005)

    MATH  Google Scholar 

  46. Schulz, J.S., Jung, S., Huckemann, S., Pierrynowski, M., Marron, J., Pizer, S.: Analysis of rotational deformations from directional data. J. Comput. Graph. Stat. 24(2), 539–560 (2015)

    Article  MathSciNet  Google Scholar 

  47. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications. Springer, Berlin (2008)

    Google Scholar 

  48. Sommer, S.: Horizontal dimensionality reduction and iterated frame bundle development. In: Geometric Science of Information, pp. 76–83. Springer, Berlin (2013)

    Google Scholar 

  49. Telschow, F.J., Huckemann, S.F., Pierrynowski, M.R.: Functional inference on rotational curves and identification of human gait at the knee joint (2016). arXiv preprint arXiv:1611.03665

    Google Scholar 

  50. van der Vaart, A.: Asymptotic Statistics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  51. Ziezold, H.: Expected figures and a strong law of large numbers for random elements in quasi-metric spaces. In: Transaction of the 7th Prague Conference on Information Theory, Statistical Decision Function and Random Processes, pp. 591–602. Springer, Berlin (1977)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Niedersachen Vorab of the Volkswagen Foundation and support from DFG HU 1575-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Huckemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huckemann, S., Eltzner, B. (2020). Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spaces. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_10

Download citation

Publish with us

Policies and ethics