Skip to main content
Log in

Modifying electronic properties of ICBA through chemical substitutions for solar cell applications

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Fullerene derivatives are the most widely used type of acceptor material in the organic solar cells (OSCs) active layers, but there are still some problems to be overcome, such as increased solubility and adjustment of the frontier electronic levels for a better combination with the donor materials in the active layer. Chemical modification of the materials already employed in active layers is an interesting way to vary the electronic properties in order to find new materials, because it is possible, in principle, to tune the intrinsic properties of the material aiming to improve the solar cell efficiency. Thus, we studied theoretically the effect caused by chemical substitutions on the electronic properties of the ICBA, one of the fullerene derivatives employed in OSCs. Geometry optimizations and electronic structure data were obtained by DFT/PBE/6-311G(d,p) calculations for 13 ICBA derivatives. We show that by chemical substitutions of ICBA, it is possible to modify the energies of the frontier electronic levels, increase the solubility, and find new derivatives that show improvements in open circuit voltage and morphology of the active layer, potentially bringing better efficiency for OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chi D, Qu S, Wang Z, Wang J (2014) High efficiency P3HT:PCBM solar cells with an inserted PCBM layer. J Mater Chem C 2:4383

    Article  CAS  Google Scholar 

  2. Dang MT, Wantz G, Bejbouji H, Urien M, Dautel OJ, Vignau L, et al. (2011) Polymeric solar cells based on P3HT:PCBM: role of the casting solvent. Sol Energy Mater Sol Cells 95:3408–3418

    Article  CAS  Google Scholar 

  3. González DM, Körstgens V, Yao Y, Song L, Santoro G, Roth SV, et al. (2015) Improved power conversion efficiency of P3HT:PCBM organic solar cells by strong spin-orbit coupling-induced delayed fluorescence. Adv Energy Mater 5:1401770

    Article  Google Scholar 

  4. Ng A, Liu X, Jim WY, Djurišić AB, Lo KC, Li SY, et al. (2014) P3HT : PCBM solar cells-the choice of source material. J Appl Polym Sci 131(39776):1–9

    Google Scholar 

  5. He Y, Chen H-Y, Hou J, Li Y (2010) Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382

    Article  CAS  Google Scholar 

  6. Cheng P, Li Y, Zhan X (2014) Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ Sci 7:2005

    Article  CAS  Google Scholar 

  7. Chen Q, Mao L, Li Y, Kong T, Wu N, Ma C, et al. (2015) Quantitative operando visualization of the energy band depth profile in solar cells. Nat Commun 6:7745

    Article  Google Scholar 

  8. Zhuang T, Wang X-F, Sano T, Hong Z, Yang Y, Kido J (2013) Fullerene derivatives as electron donor for organic photovoltaic cells. Appl Phys Lett 103:203301

    Article  Google Scholar 

  9. Oliveira EF, Lavarda FC (2014) Molecular design of new P3HT derivatives: adjusting electronic energy levels for blends with PCBM. Mater Chem Phys 148:923–932

    Article  CAS  Google Scholar 

  10. Roldao JC, Oliveira EF, Lavarda FC (2016) Electronic structure of polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) derivatives for organic solar cell applications. Org Electron 33:246–252

    Article  CAS  Google Scholar 

  11. Oliveira EF, Lavarda FC (2016) Copolymers with similar comonomers: tuning frontier orbital energies for application in organic solar cells. Polym Eng Sci 56:479–487

    Article  CAS  Google Scholar 

  12. de Oliveira EF, Camilo-Jr A, da Silva-Filho LC, Lavarda FC (2013) Effect of chemical modifications on the electronic structure of poly(3-hexylthiophene). J Polym Sci Part B Polym Phys 51:842–846

    Article  CAS  Google Scholar 

  13. Kroon R, Lenes M, Hummelen JC, Blom PWM, de Boer B (2008) Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years). Polym Rev. 48:531–582

  14. Lu L, Yu L (2014) Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv Mater 26:4413–4430

    Article  CAS  Google Scholar 

  15. Körzdörfer T, Brédas J-L (2014) Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. Acc Chem Res 47:3284–3291

    Article  Google Scholar 

  16. Oliveira EF, Roldao JC, Milián-Medina B, Lavarda FC, Gierschner J (2016) Calculation of low bandgap homopolymers: comparison of TD-DFT methods with experimental oligomer series. Chem Phys Lett 645:169–173

    Article  CAS  Google Scholar 

  17. Jain A, Shin Y, Persson KA (2016) Computational predictions of energy materials using density functional theory. Nat Rev Mater 1:15004

    Article  CAS  Google Scholar 

  18. Zade SS, Zamoshchik N, Bendikov M (2011) From short conjugated oligomers to conjugated polymers. Lessons from studies on long conjugated oligomers. Acc Chem Res 44:14–24

    Article  CAS  Google Scholar 

  19. Al-Sehemi AG, Al-Melfi MAM, Irfan A (2013) Electronic, optical, and charge transfer properties of donor–bridge–acceptor hydrazone sensitizers. Struct Chem 24:499–506

    Article  CAS  Google Scholar 

  20. Kar S, Sizochenko N, Ahmed L, Batista VS, Leszczynski J (2016) Quantitative structure-property relationship model leading to virtual screening of fullerene derivatives: exploring structural attributes critical for Photoconversion efficiency of polymer solar cell acceptors. Nano Energy 26:677–691

    Article  CAS  Google Scholar 

  21. Kar S, Roy J, Leszczynska D, Leszczynski J (2017) Power conversion efficiency of arylamine organic dyes for dye-sensitized solar cells (DSSCs) explicit to cobalt electrolyte: understanding the structural attributes using a direct QSPR approach. Computation. doi:10.3390/computation5010002

    Google Scholar 

  22. Laird BB, Ross RB, Ziegler T (1996) Chemical applications of density-functional theory. American Chemical Society, Washington, DC

    Book  Google Scholar 

  23. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372-1377

  24. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648-5652

  25. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

  26. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

  27. Xu X, Zhang Q, Muller RP, Goddard WA (2005) An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems. J Chem Phys 122:14105

  28. Paier J, Hirschl R, Marsman M, Kresse G (2005) The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J Chem Phys 122:234102

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al (2009) Gaussian09, Revision D. 01, Gaussian. Inc., Wallingford, CT

  30. Zhang X, Li X-D (2014) Effect of the position of substitution on the electronic properties of nitrophenyl derivatives of fulleropyrrolidines: fundamental understanding toward raising LUMO energy of fullerene electron-acceptor. Chin Chem Lett 25:501–504

    Article  Google Scholar 

  31. Ferreira RM, Batagin-Neto A, Lavarda FC (2015) Modeling of open-circuit voltage of phenyl C61-butyric acid methyl Ester-like based bulk-heterojunction solar cells. J Nanosci Nanotechnol 15:9960–9965

    Article  CAS  Google Scholar 

  32. Zhang X, Ma L-X, Li X-D (2014) Establishment of a linear correlation between the LUMO levels of fullerenes and the Hammett constants of substituents installed: an experimental and theoretical study. Synth Met 198:357–360

    Article  CAS  Google Scholar 

  33. Krasnokutski SA, Kuhn M, Kaiser A, Mauracher A, Renzler M, Bohme DK, et al. (2016) Building carbon bridges on and between fullerenes in helium nanodroplets. J Phys Chem Lett 7(8):1440–1445

    Article  CAS  Google Scholar 

  34. Matsuo Y (2012) Design Concept for High-LUMO-level Fullerene Electron-acceptors for Organic Solar Cells. Chem Lett 41:754–759

  35. Zhou H, Yang L, You W (2012) Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules 45:607–632

  36. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6:153–161

  37. Li Y (2012) Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption. Acc Chem Res 45:723–733

  38. Takimiya K, Osaka I, Nakano M (2014) π-Building Blocks for Organic Electronics: Revaluation of “Inductive” and “Resonance” Effects of π-Electron Deficient Units. Chem Mater 26:587–593

  39. Nicolaidis NC, Routley BS, Holdsworth JL, Belcher WJ, Zhou X, Dastoor PC (2011) Fullerene Contribution to Photocurrent Generation in Organic Photovoltaic Cells. J Phys Chem C 115:7801–7805

  40. Carsten B, Szarko JM, Son HJ, Wang W, Lu L, He F, et al. (2011)Examining the Effect of the Dipole Moment on Charge Separation in Donor–Acceptor Polymers for Organic Photovoltaic Applications. J Am Chem Soc 133:20468–20475

  41. Kumar R, Khan S, Gupta N, Naqvi S, Gaurava K, Sharma C, Kumar M, Kumar P, Chand S (2016) Fullerene grafted graphene oxide with effective charge transfer interactions. Carbon 107:765–773

    Article  CAS  Google Scholar 

  42. Chen H, Hsiao Y-C, Hu B, Dadmun M (2014) Control of morphology and function of low band gap polymer–bis-fullerene mixed heterojunctions in organic photovoltaics with selective solvent vapor annealing. J Mater Chem A. 2:9883

  43. Choy WCH (2013) Organic solar cells: materials and device physics. Springer, London

  44. Lin Y-H, Tsai Y-T, Wu C-C, Tsai C-H, Chiang C-H, Hsu H-F, et al. (2012) Comparative study of spectral and morphological properties of blends of P3HT with PCBM and ICBA. Org Electron 13:2333–2341

    Article  CAS  Google Scholar 

  45. Cho S, Rolczynski BS, Xu T, Yu L, Chen LX (2015) Solution phase exciton diffusion dynamics of a charge-transfer copolymer PTB7 and a Homopolymer P3HT. J Phys Chem B 119:7447–7456

    Article  CAS  Google Scholar 

  46. Bredas J-L (2014) Mind the gap! Mater Horiz 1:17–19

    Article  CAS  Google Scholar 

  47. Ameri T, Min J, Li N, Machui F, Baran D, Forster M, et al. (2012) Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv Energy Mater 2:1198–1202

    Article  CAS  Google Scholar 

  48. Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, et al. (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138

    Article  CAS  Google Scholar 

  49. Zhao G, He Y, Li Y (2010) 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater 22:4355–4358

    Article  CAS  Google Scholar 

  50. Zhou N, Kim M-G, Loser S, Smith J, Yoshida H, Guo X, et al. (2015) Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells. Proc Natl Acad Sci 112:7897–7902

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Brazilian agency FAPESP (proc. 2012/21983-0 and 2014/20410-1) for financial support. This research was also supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliezer Fernando Oliveira.

Electronic supplementary material

ESM 1

(DOCX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, E.F., Silva, L.C. & Lavarda, F.C. Modifying electronic properties of ICBA through chemical substitutions for solar cell applications. Struct Chem 28, 1133–1140 (2017). https://doi.org/10.1007/s11224-017-0916-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0916-0

Keywords

Navigation