Skip to main content

Advertisement

Log in

Theoretical investigation by DFT and TDDFT the extension of π-conjugation of novel carbazole-based donor materials for bulk heterojunction organic solar cell applications

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, we have proposed seven designed symmetrical compounds (C2-C8) having a D-π-A-π-D structure based on derivative carbazole as a donor by introducing various π-spacer groups into the reference compound C1-Ref having a D-A-D structure in order to understand the influence of different π-spacers on their efficiency in BHJ solar cells. Various parameters such as geometrical structures, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), nonlinear optical properties (NLO), optical properties, light-harvesting efficiency (LHE), reorganization energy, chemical reactivity indices, exciton binding energy (Eb), open-circuit voltage (VOC), and fill-factor (FF) have been investigated using the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The results show that the extended π-conjugation of the designed compounds (C2-C8) produces a lower energy gap (Eg), a stronger and broader absorption spectrum, lower reorganization energies and exciton binding, and higher nonlinear optical properties compared to C1-Ref, indicating that these designed compounds are promising as electron donors in BHJ-OSCs. Additionally, the calculated Voc, FF, and LHE of all compounds showed that the C2, C3, C4, C5, and C7 compounds have the best performance in BHJ solar cells compared to the others. In particular, C4 and C5 are excellent candidates for the effective donor materials of BHJ solar cells due to their large Voc, FF, and LHE than the other compounds. This theoretical investigation is expected to provide new strategies to synthesize efficient donor materials for BHJ-OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. Jaffar K, Elqahtani ZM, Afzal QQ, Ans M, Riaz S, Tahir MA, Iqbal J, Mahmoud ZMM, Alrowaili ZA, Al-Buriahi MS (2022) Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells. Polymer 245:124675

    Article  CAS  Google Scholar 

  2. Zaier R, Ayachi S (2021) DFT molecular modeling studies of D-π-A-π-D type cyclopentadithiophene-diketopyrrolopyrrole based small molecules donor materials for organic photovoltaic cells. Optik 239:166787

    Article  CAS  Google Scholar 

  3. Kannan N, Vakeesan D (2016) Solar energy for future world: - a review. Renew Sustain Energy Rev 62:1092–1105

    Article  Google Scholar 

  4. Zhang M, Wang J, Ma X, Gao J, Xu C, Hu Z, Niu L, Zhang F (2020) Review on smart strategies for achieving highly efficient ternary polymer solar cells. APL Mater 8:090703

    Article  CAS  Google Scholar 

  5. Li Y (2015) Photovoltaic efficiency of solution-processable organic molecules reached near 10% Sci. China Chem 5858:191–191

    Article  Google Scholar 

  6. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J Am Chem Soc 139:7148–7151

    Article  CAS  PubMed  Google Scholar 

  7. Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z (2016) Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat Commun 7:13740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li H, Xiao Z, Ding L, Wang J (2018) Thermostable single-junction organic solar cells with a power conversion efficiency of 14.62%. Science Bulletin 63:340–342

    Article  CAS  Google Scholar 

  9. Chen K-W, Lin L-Y, Li Y-H, Li Y-Z, Nguyen TP, Biring S, Liu S-W, Wong K-T (2018) Fluorination effects of A-D-A-type small molecules on physical property and the performance of organic solar cell. Org Electron 52:342–349

    Article  CAS  Google Scholar 

  10. Hong J, Sung MJ, Cha H, Park CE, Durrant JR, An TK, Kim Y-H, Kwon S-K (2018) Understanding structure–property relationships in all-small-molecule solar cells incorporating a fullerene or nonfullerene acceptor. ACS Appl Mater Interfaces 10:36037–36046

    Article  CAS  PubMed  Google Scholar 

  11. Qiu Z, Xu X, Yang L, Pei Y, Zhu M, Peng Q, Liu Y (2018) Tuning the central donor core via intramolecular noncovalent interactions based on D(A-Ar)2 type small molecules for high performance organic solar cells. Sol Energy 161:138–147

    Article  CAS  Google Scholar 

  12. Aicha Youssef A, Mohamed Bouzzine S, Mohyi Eddine FahimSıdırHamidiBouachrine ZİMM (2019) Designing donor-acceptor thienopyrazine derivatives for more efficient organic photovoltaic solar cell: a DFT study. Physica B 560:111–125

    Article  CAS  Google Scholar 

  13. Roncali J (2007) Molecular Engineering of the band gap of π-Conjugated systems: facing technological applications. Macromol Rapid Commun 28:1761–1775

    Article  CAS  Google Scholar 

  14. Etabti H, Fitri A, Touimi Benjelloun A, Benzakour M, Mcharfi M (2022) Efficient tuning of benzocarbazole based small donor molecules with D-π-A-π-D configuration for high-efficiency solar cells via π-bridge manipulation: a DFT/ TD-DFT study. Comput Theor Chem 1208:113580

    Article  CAS  Google Scholar 

  15. Hachi M, Slimi A, Fitri A, ElKhattabi S, Benjelloun AT, Benzakour M, Mcharfi M (2020) New small organic molecules based on thieno[2,3-b]indole for efficient bulk heterojunction organic solar cells: a computational study. Mol Phys 118:e1662956

    Article  Google Scholar 

  16. He GS, Lin T-C, Prasad PN, Kannan R, Vaia RA, Tan L-S (2002) Study of Two-photon absorption spectral property of a novel nonlinear optical chromophore using femtosecond continuum. J Phys Chem B 106:11081–11084

    Article  CAS  Google Scholar 

  17. Lee H, Jo H, Kim D, Biswas S, Sharma GD, Ko J (2016) The effect of acceptor end groups on the physical and photovoltaic properties of A–π–D–π–A type oligomers with same S, N-heteropentacene central electron donor unit for solution processed organic solar cells. Dyes Pigm 129:209–219

    Article  CAS  Google Scholar 

  18. He L-J, Chen J, Bai F-Q, Jia R, Wang J, Zhang H-X (2017) Fine-tuning π-spacer for high efficiency performance DSSC: A theoretical exploration with D − π − a based organic dye. Dyes Pigm 141:251–261

    Article  CAS  Google Scholar 

  19. Luponosov YN, Min J, Solodukhin AN, Chvalun SN, Ameri T, Brabec CJ, Ponomarenko SA (2015) Design of low band gap small molecules with alkyldicyanovinyl acceptor and different donor groups for efficient bulk heterojunction organic solar cells. In: Kafafi ZH, Lane PA, Samuel IDW (Eds.) San Diego, California, United States 9567:95670W-1. https://doi.org/10.1117/12.2187454

  20. Maglione C, Carella A, Centore R, Chávez P, Lévêque P, Fall S, Leclerc N (2017) Novel low bandgap phenothiazine functionalized DPP derivatives prepared by direct heteroarylation: Application in bulk heterojunction organic solar cells. Dyes Pigm 141:169–178

    Article  CAS  Google Scholar 

  21. Korshunov VM, Mikhailov MS, Chmovzh TN, Vashchenko AA, Gudim NS, Mikhalchenko LV, Taydakov IV, Rakitin OA (2021) Novel D-A-D Fluorescent dyes based on 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole as a donor unit for solution-processed organic light-emitting-diodes. Molecules 26:2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa I, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O¨, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian Inc., Wallingford

  23. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  24. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) 6–31G* basis set for atoms K through Zn. J Chem Phys 109:1223–1229

    Article  CAS  Google Scholar 

  27. Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  28. Chipman DM (2002) Energy correction to simulation of volume polarization in reaction field theory. J Chem Phys 116:10129–10138

    Article  CAS  Google Scholar 

  29. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  30. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  31. Wang Y, Verma P, Jin X, Truhlar DG, He X (2018) Revised M06 density functional for main-group and transition-metal chemistry. Proc Natl Acad Sci 115:10257–10262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  33. Nebbach D, Agda F, Kaya S, Siddique F, Lakhlifi T, Aziz Ajana M, Bouachrine M (2022) Non-fullerene acceptor IDIC based on indacinodithiophene used as an electron donor for organic solar cells: a computational study. J Mol Liq 348:118289

    Article  CAS  Google Scholar 

  34. Bourass M, Touimi Benjelloun A, Benzakour M, Mcharfi M, Jhilal F, Hamidi M, Bouachrine M (2017) The optoelectronic properties of organic materials based on triphenylamine that are relevant to organic solar photovoltaic cells. New J Chem 41:13336–13346

    Article  CAS  Google Scholar 

  35. Britel O, Fitri A, Benjelloun AT, Slimi A, Benzakour M, Mcharfi M (2022) Theoretical investigation of the influence of π-spacer on photovoltaic performances in carbazole-based dyes for dye-sensitized solar cells applications. J Photochem Photobiol A 428:113870. https://doi.org/10.1016/j.jphotochem.2022.113870

    Article  CAS  Google Scholar 

  36. Britel O, Fitri A, Touimi Benjelloun A, Slimi A, Benzakour M, Mcharfi M (2022) Theoretical design of new carbazole based organic dyes for DSSCs applications. a DFT/TD-DFT insight. J Photochem Photobiol A:Chem 429:113902. https://doi.org/10.1016/j.jphotochem.2022.113902

  37. El Mouhi R, Slimi A, Fitri A, Benjelloun AT, ElKhattabi S, Benzakour M, Mcharfi M, Kurban M (2022) DFT, DFTB and TD-DFT theoretical investigations of π-conjugated molecules based on thieno[2,3-b] indole for dye-sensitized solar cell applications. Physica B 636:413850

    Article  Google Scholar 

  38. Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouachrine M (2014) Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell. Spectrochim Acta Part A Mol Biomol Spectrosc 124:646–654

    Article  CAS  Google Scholar 

  39. Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouachrine M (2014) Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 132:232–238

    Article  CAS  Google Scholar 

  40. Ans M, Ayub K, Muhammad S, Iqbal J (2019) Development of fullerene free acceptors molecules for organic solar cells: a step way forward toward efficient organic solar cells. Comput Theor Chem 1161:26–38

    Article  CAS  Google Scholar 

  41. Ans M, Manzoor F, Ayub K, Nawaz F, Iqbal J (2019) Designing dithienothiophene (DTT)-based donor materials with efficient photovoltaic parameters for organic solar cells. J Mol Model 25:1–12

    Article  CAS  Google Scholar 

  42. Zahid S, Rasool A, Ans M, Yaseen M, Iqbal J (2021) Quantum Chemical approach of donor−π−acceptor based arylborane−arylamine macrocycles with outstanding photovoltaic properties toward high-performance organic solar cells. Energy Fuels 35:15018–15032. https://doi.org/10.1021/acs.energyfuels.1c02260

    Article  CAS  Google Scholar 

  43. UrRehman S, Anwer M, BiBi S, Jamil S, Yasin M, Rauf Khan S, Nadeem R, Ali S, Jia R (2022) DFT analysis of different substitutions on optoelectronic properties of carbazole-based small acceptor materials for Organic Photovoltaics. Mater Sci Semicond Process 140:106381

    Article  CAS  Google Scholar 

  44. Azeem U, Khera RA, Naveed A, Imran M, Assiri MA, Khalid M, Iqbal J (2021) Tuning of a A-A–D–A–A-Type small molecule with benzodithiophene as a central core with efficient photovoltaic properties for organic solar cells. ACS Omega 6:28923–28935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aboulouard A, Mtougui S, Demir N, Moubarik A, idrissi ME, Can M (2021) New non-fullerene electron acceptors-based on quinoxaline derivatives for organic photovoltaic cells: DFT computational study. Synth Met 279:116846

    Article  CAS  Google Scholar 

  46. Tajammal A, Ans M, Farhat Mehmood R, Iqbal J, Javaid Akram S, Murtaza A, Ahmad Khera R (2022) Engineering of A2-D-A1-D-A2 type BT-dIDT based non-fullerene acceptors for effective organic solar cells. Comput Theor Chem 1211:113666

    Article  CAS  Google Scholar 

  47. Zubair I, Ahmad Kher R, Javaid Akram S, El-Badry YA, Umar Saeed M, Iqbal J (2022) Tuning the optoelectronic properties of indacenodithiophene based derivatives for efficient photovoltaic applications: a DFT approach. Chem Phys Lett 793:139459

    Article  CAS  Google Scholar 

  48. Saeed MU, Iqbal J, Mehmood RF, Akram SJ, El-Badry YA, Noor S, Khera RA (2022) End-capped modification of Y-Shaped dithienothiophen[3,2-b]-pyrrolobenzothiadiazole (TPBT) based non-fullerene acceptors for high performance organic solar cells by using DFT approach. Surf Interfaces 30:101875

    Article  CAS  Google Scholar 

  49. Wazzan NA (2019) A DFT/TDDFT investigation on the efficiency of novel dyes with ortho-fluorophenyl units (A1) and incorporating benzotriazole/benzothiadiazole/phthalimide units (A2) as organic photosensitizers with D-A2–π–A1 configuration for solar cell applications. J Comput Electron 18:375–395

    Article  CAS  Google Scholar 

  50. Li Y, Li X, Xu Y (2020) Theoretical screening of high-efficiency sensitizers with D-π-A framework for DSSCs by altering promising donor group. Sol Energy 196:146–156

    Article  CAS  Google Scholar 

  51. Patil DS, Avhad KC, Sekar N (2018) Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties – DFT approach. Comput Theor Chem 1138:75–83

    Article  CAS  Google Scholar 

  52. Balanay MP, Kim DH (2011) Optical properties of porphyrin analogues for solar cells: An NLO approach. Curr Appl Phys 11:109–116

    Article  Google Scholar 

  53. Muthu S, Uma Maheswari J (2012) Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H, UV) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 4-[(4-aminobenzene) sulfonyl] aniline by ab initio HF and density functional method. Spectrochim Acta Part A Mol Biomol Spectrosc 92:154–163

    Article  CAS  Google Scholar 

  54. Chaitanya K, Ju X-H, Heron BM (2015) Can elongation of the π-system in triarylamine derived sensitizers with either benzothiadiazole and/or ortho-fluorophenyl moieties enrich their light harvesting efficiency? – a theoretical study. RSC Adv 5:3978–3998

    Article  CAS  Google Scholar 

  55. Li Y, Li X, Xu Y (2020) A rational design of excellent light-absorbing dyes with different N-substituents at the phenothiazine for high efficiency solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 234:118241

    Article  CAS  Google Scholar 

  56. Song C, Wang Z, Li J, Chen Y, Zhao F, Zhang H (2020) Extension of π-conjugation and enhancement of electron-withdrawing ability at terminal indenedione for A-π-D-π-A small molecules for application in organic solar cells. Org Electron 81:105679

    Article  CAS  Google Scholar 

  57. Zaier R, De La Cruz MP, De La Puente FL, Ayachi S (2020) Optoelectronic properties of cyclopentadithiophene-based donor–acceptor copolymers as donors in bulk heterojunction organic solar cells: a theoretical study. J Phys Chem Solids 145:109532

    Article  CAS  Google Scholar 

  58. W.F, Deng W (2013) Incorporation of thiadiazole derivatives as π-Spacer to construct efficient metal-free organic dye sensitizers for dye-sensitized solar cells: a theoretical study. CiCC 1:152–170

  59. Marcus RA (1956) On the Theory of oxidation-reduction reactions involving electron transfer. I J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  60. Datta A, Mohakud S, Pati SK (2007) Electron and hole mobilities in polymorphs of benzene and naphthalene: role of intermolecular interactions. J Chem Phys 126:144710

    Article  PubMed  Google Scholar 

  61. Rad AS, Ayub K (2018) Nonlinear optical and electronic properties of Cr-, Ni-, and Ti- substituted C 20 fullerenes: a quantum-chemical study. Mater Res Bull 97:399–404

    Article  CAS  Google Scholar 

  62. Mandal S, Kandregula GR, Ramanujam K (2020) Replacing aromatic π-system with cycloalkyl in triphenylamine dyes to impact intramolecular charge transfer in dyes pertaining to dye-sensitized solar cells application. J Photochem Photobiol A 403:112862

    Article  CAS  Google Scholar 

  63. Afzal QQ, Jaffar K, Ans M, Rafique J, Iqbal J, Shehzad RA, Mahr MS (2022) Designing benzothiadiazole based highly efficient non-fullerene acceptor molecules for organic solar cells. Polymer 238:124405

    Article  CAS  Google Scholar 

  64. Rasool A, Zahid S, Ans M, Muhammad S, Ayub K, Iqbal J (2022) Bithieno thiophene-based small molecules for application as donor materials for organic solar cells and hole transport materials for perovskite solar cells. aCS Omega 7:844–862

  65. Khalid A, Khera RA, Saeed A, Khalid M, Iqbal S, Iqbal J (2021) Designing benzothiadiazole based non-fullerene acceptors with high open circuit voltage and higher LUMO level to increase the efficiency of organic solar cells. Optik 228:166138

    Article  CAS  Google Scholar 

  66. Nayak PK, Garcia-Belmonte G, Kahn A, Bisquert J, Cahen D (2012) Photovoltaic efficiency limits and material disorder. Energy Environ Sci 5:6022

    Article  CAS  Google Scholar 

  67. Guo X, Zhou N, Lou SJ, Smith J, Tice DB, Hennek JW, Ortiz RP, Navarrete JTL, Li S, Strzalka J, Chen LX, Chang RPH, Facchetti A, Marks TJ (2013) Polymer solar cells with enhanced fill factors. Nature Photon 7:825–833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Omar Britel: conceived of the presented idea, developed the theory and performed the computations. Asmae Fitri, Adil Touimi Benjelloun, Mohammed Benzakour, and Mohammed Mcharfi: verified the analytical methods and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Omar Britel or Adil Touimi Benjelloun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

N/A.

Consent of publication

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britel, O., Fitri, A., Benjelloun, A.T. et al. Theoretical investigation by DFT and TDDFT the extension of π-conjugation of novel carbazole-based donor materials for bulk heterojunction organic solar cell applications. J Mol Model 28, 351 (2022). https://doi.org/10.1007/s00894-022-05347-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05347-w

Keywords

Navigation