Skip to main content
Log in

Generalized crystallography and bound-water modular structures determining morphogenesis and size of biosystems

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

By now, modern science has studied natural and synthetic crystalline and amorphous materials almost completely. So, in the future, it will be oriented to investigate potential possibilities that can be realized by modeling and subsequent synthesis. The main problem that should be solved by creation of the appropriate method of such modeling is to study the structural mechanisms of self-organization, morphogenesis and functioning of these materials. The question not solved yet is: what is the basis for the crystallography generalization that would retain application of the main method of crystallography, i.e., symmetry? To solve this problem, which includes design of potentially possible structures, a new notion, “module,” was introduced. To provide stability of a solid structure, complete bonding of its atoms is necessary, which is characterized by this notion. Cooperative transformations of some crystal structures to the aperiodic symmetric ones of the same chemical composition are known, which means that a determinate transition to the non-Euclidean structures is possible. Carbon atoms in diamond-like structures and water molecules have tetrahedral symmetry, which is typical to the systems with metric based on golden section. It is natural to assume that the tetrahedral symmetry of water molecules is retained in stable noncrystal structures of bound-water as well. To distinguish, in a heterogeneous biosystem, a homogeneous solid-like system-forming component that determines the biosystem morphology and size, an axiomatic method was applied. It was shown that only bound water can serve as such a system-forming component. To model bound-water structures, the method of modular design was used. The fractal properties of bound-water structures were studied. On this basis, the similarity of forms of biosystems belonging to different hierarchy levels, the properties of protein and biocrystal structures, the water surface-layer structure and its cooperative transformation induced by contact with other phases, the structure of the surfaces of biological tissues, nondissipative propagation of energy in biosystems, and the predetermined character of prebiological evolution and the origin of life were explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In this paper, the record \(T_{{r_{1} }}^{{C_{2} }} sD_{3}\), \(T_{{r_{1} }} \cap D_{3} = C_{3}\) denotes that the wreath product of the С 3 group, which is a subgroup of Т, with the С 2 group results in the D 3 group (if the corresponding two- and three-fold axes are in a special position r 1 with respect to each other). The commonly accepted notation for such wreath product is C 3  C 2 = D 3, where the symbol denotes the wreath product operation [45]. However, the notation used for wreath products in this paper allows one to more clearly show the hierarchical character of the obtained structures.

  2. In a T-cluster, twisted hexacycles are slightly tightened. As a result, this ratio becomes not 1:τ2, as it should be according to the previous consideration, but 1:τ.

  3. In a rod, the T-clusters are contracted, which results in a decrease of the similarity coefficient from its theoretical value M i j  = (2j(τ + 1) + 1)i. The value of this contraction depends on the interaction potential between the atoms forming a T-cluster. For example, for the potential of tetrahedral C atoms used in HyperChem, M 11  = 6. The expression M ij  = (3 + 1)i used for the similarity coefficient is a good approximation, which reflects both contraction of T-clusters and relation to the golden section.

References

  1. Bernal JD, Carlisle CH (1968) Kristallografiya 13(5):927–951 (in Russian)

    CAS  Google Scholar 

  2. Bernal JD, Carlisle CH (1968) Sov Phys Crystallogr 13(5):811

    Google Scholar 

  3. Mackay AL (1986) Comp Math Appl 128(1/2):21–37

    Article  Google Scholar 

  4. Mackay AL (1996) Strukturnye issledovaniya kristallov (structural studies of crystals). Nauka, Moscow, pp 431–446 (in Russian)

    Google Scholar 

  5. Bulienkov NA (1998) Three possible branches of determinate modular generalization of crystallography. In: Patera J (ed) Fields institute monographs. Quasicrystals and discrete geometry, vol 10. American Mathematical Society, Providence, pp 67–134

    Chapter  Google Scholar 

  6. Bulienkov NA (2005) Biofizika 50(5):934–958 (in Russian)

    CAS  Google Scholar 

  7. Bulienkov NA (2005) Biophysics 50(5):811–831

    Google Scholar 

  8. Bulienkov NA (2011) Kristallografiya 56(4):729–746 (in Russian)

    Google Scholar 

  9. Bulienkov NA (2011) Crystallogr Rep 56(4):680–697

    Article  CAS  Google Scholar 

  10. Bachelard G (1987) Novyi ratsionalizm (new rationalism). In: Zotov AF (translator and ed) Progress, Moscow (in Russian)

  11. Feynman R (1959) There’s plenty of room in the bottom. The talk is available on the web at http://www.zyvex.com/nanotech/feynman.html with their kind permission

  12. Roco MC, Williams RS, Alivisatos P (eds) (2000) Nanotechnology research directions: IWGN workshop report. Vision for nanotechnology research directions in the next decade. Kluwer, London

  13. O’Keeffe M, Eddaoudi M, Li H, Reineke T, Yaghi OM (2000) J Solid State Chem 152(1):3

    Article  Google Scholar 

  14. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276

    Article  CAS  Google Scholar 

  15. Davis ME (2002) Nature 417:813

    Article  CAS  Google Scholar 

  16. Engelgardt VA (1985) Poznanie yavlenii zhizni (cognition of life phenomena). Nauka, Moscow (in Russian)

    Google Scholar 

  17. Bauer ES (2001) Teoreticheskaya biologiya (theoretical biology). Dynamics, Moscow, Izhevsk (in Russian)

  18. Lyubishchev AA (1982) Problemy formy, sistematiki i evolyutsii organizmov (problems of form, systematics, and evolution of organisms). Nauka, Moscow (in Russian)

    Google Scholar 

  19. Lyubishchev AA (1973) Priroda (10):42 (in Russian)

  20. Lyubishchev AA (1973) Znanie–Sila (5):26 (in Russian)

  21. Bulienkov NA, Zheligovskaya EA (2006) Zhurnal Fizicheskoi Khimii 80(10):1784–1805 (in Russian)

    Google Scholar 

  22. Bulienkov NA, Zheligovskaya EA (2006) Russ J Phys Chem 80(10):1584–1604

    Article  CAS  Google Scholar 

  23. Poincaré H (1990) O nauke (on science). Nauka, Moscow (in Russian)

    Google Scholar 

  24. Bulienkov NA (1998) Vestnik Nizhegorodskogo Universiteta im. NI Lobachevskogo. Ser. Fizika Tverdogo Tela (1):19–30 (in Russian)

  25. Bul’enkov NA, Kraposhin VS (1993) Pis’ma v ZhTF 19(23):1–7 (in Russian)

    Google Scholar 

  26. Bul’enkov NA, Kraposhin VS (1993) Tech Phys Lett 19(12):739–741

    Google Scholar 

  27. Bulienkov NA, Phan Van An, Pham Van Nho (2003) In: Proceedings of 48th international SAMPE symposium “advancing materials in the global economy—applications, emerging markets, and evolving technologies (May 2003). Long Beach. Book 1, pp 1191–1202

  28. Bul’enkov NA (1988) Kristallografiya 33(2):424–444 (in Russian)

    Google Scholar 

  29. Bul’enkov NA (1988) Sov Phys Crystallogr 33(2):250–261

    Google Scholar 

  30. Bul’enkov NA (1990) Kristallografiya 35(1):147–154 (in Russian)

    Google Scholar 

  31. Bul’enkov NA (1990) Sov Phys Crystallogr 35(1):88–92

    Google Scholar 

  32. Bul’enkov NA (1990) Kristallografiya 35(1):155–159 (in Russian)

    Google Scholar 

  33. Bul’enkov NA (1990) Sov Phys Crystallogr 35(1):92–95

    Google Scholar 

  34. Bulenkov NA (1991) Biofizika 36(2):181–243 (in Russian)

    CAS  Google Scholar 

  35. Belov NV (1947) Struktura ionnykh kristallov i metallicheskikh faz (the structure of ionic crystals and metal phases). Izdatel’stvo AN SSSR, Moscow–Leningrad (in Russian)

  36. Fedorov ES (1949) Struktura i simmetriya kristallov (the structure and symmetry of crystals). Izdatel’stvo AN SSSR, Moscow–Leningrad (in Russian)

  37. Bernal JD (1962) Kristallografiya 7(4):507–519 (in Russian)

    CAS  Google Scholar 

  38. Bernal JD (1962) Sov Phys Crystallogr 7(4):410

    Google Scholar 

  39. Coxeter HSM (1961) Introduction to geometry. Wiley, New York

    Google Scholar 

  40. Osip’yan YA, Negrii VD, Bul’enkov NA (1987) Izvestiya Akademii nauk SSSR. Ser Fizicheskaya 51(9):1458–1464 (in Russian)

    Google Scholar 

  41. Bulienkov NA (2003) J Mol Liq 106(2–3):257–275

    Article  CAS  Google Scholar 

  42. Bulienkov NA, Tytik DL (2001) Izvestiya Akademii nauk. Ser Khimicheskaya (1):1–19 (in Russian)

  43. Bulienkov NA, Tytik DL (2001) Russ Chem Bull 50(1):1–19

    Article  CAS  Google Scholar 

  44. Yasushi Ysh (1987) Technical Report. ISSP, Ser A, no 1, p 1

  45. Shubnikov AV, Koptsik VA (1972) Simmetriya v nauke i iskusstve (symmetry in nature and art). Nauka, Moscow (in Russian)

    Google Scholar 

  46. Bul’enkov NA, Tytik DL (2001) In: Sbornik trudov V Vserossiiskoi konferentsii “Fiziko-khimiya ultradispersnykh sistem” (proceedings of the 5th all-Russia conference “physics and chemistry of ultradisperse systems”). Part I. Ekaterinburg. p 31 (in Russian)

  47. Coxeter HSM (1974) Regular complex polytopes. Cambridge University Press, Cambridge

    Google Scholar 

  48. Bulienkov NA, Zheligovskaya EA (2014) Zhurnal Strukturnoi Khimii 55(7):S30–S40 (in Russian)

    Google Scholar 

  49. Bulienkov NA, Zheligovskaya EA (2014) J Struct Chem 55(7):1215–1224

    Article  CAS  Google Scholar 

  50. Takahashi Y, Tadokoro H (1973) Macromolecules 6(5):672–675

    Article  CAS  Google Scholar 

  51. Bailey FE, Kolesky JV (1976) Poly(ethylene oxide). Academic Press, London

    Google Scholar 

  52. Carter DC, He XM, Munson SH et al (1989) Science 244:1195–1198

    Article  CAS  Google Scholar 

  53. Carter DC, He XM (1990) Science 249:302–303

    Article  CAS  Google Scholar 

  54. He XM, Carter DC (1992) Nature 358:209–215

    Article  CAS  Google Scholar 

  55. King MW, Bello J, Pignataro EH, Harker D (1962) Acta Crystallogr 15(Part 2):144

    Article  CAS  Google Scholar 

  56. Avey HP, Boles MO, Carlisle CH et al (1967) Nature 213:557–562

    Article  CAS  Google Scholar 

  57. Kartha G, Bello J, Harker D (1967) Nature 213:862–865

    Article  CAS  Google Scholar 

  58. An PV, Bulienkov NA (2000) Mater Sci Res Int 6(1):22–28

    Google Scholar 

  59. Newman WR, Newman MW (1958) The chemical dynamics of bone mineral. Chicago Univ. Press, Chicago

    Google Scholar 

  60. Rees AR, Sternberg MJE (1984) From cells to atoms. Blackwell Scientific Publications, Oxford

    Google Scholar 

  61. Belia I, Eaton M, Brodsky B, Berman HM (1994) Science 266:75

    Article  Google Scholar 

  62. Kostov I (1968) Mineralogy. Oliver and Boyd, London

    Google Scholar 

  63. Besset A (1967) In: Molekuly i kletki (molecules and cells), vol 2. Mir, Moscow, p 163 (in Russian)

  64. de Laplace PS (1982) Izlozhenie sistemy mira (exposition du Système du monde). Nauka, Moscow (in Russian)

    Google Scholar 

  65. Davydov AS (1986) Solitony v bioenergetike (solitons in bioenergetics). Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  66. Kaganer VM, Möhwald H, Dutta P (1999) Rev Mod Phys 71(3):779–819

    Article  CAS  Google Scholar 

  67. Szent-Györgyi A (1957) Bioenergetics. Academic Press, New York

    Google Scholar 

  68. Bernal JD (1963) The origin of life. Weidenfold and Nicolson, London

    Google Scholar 

  69. Blyumenfel’d LA (1977) Problemy biologicheski fiziki (the problems of biological physics). Nauka, Moscow (in Russian)

    Google Scholar 

  70. de Duve C (1984) A guided tour of the living cell, vol one. Scientific American Books, New York

    Google Scholar 

  71. Bulienkov NA, Zheligovskaya EA (2013) Biofizika 58(1):8–26

    Google Scholar 

  72. Bulienkov NA, Zheligovskaya EA (2013) Biophysics 58(1):1–18

    Article  CAS  Google Scholar 

  73. Arslanov VV, Sheinina LS, Kalinina MA (2005) In: Sovremennye problemy fizicheskoi khimii (modern problems of physical chemistry). IFKhE RAN and GRANITSA, Moscow, pp 94–118 (in Russian)

  74. Lehn J-M (1995) Supramolecular chemistry: concepts and perspectives. VCH, Weinheim

    Book  Google Scholar 

  75. Thompson M (2001) Philosophy of science. Hodder Headline Plc, London

    Google Scholar 

  76. Bulienkov NA, Phan Van An (1999) In: CD-Proceedings of 12th international conference on composite materials (July 5–9, 1999). Paris, paper 658, pp 1–10

  77. Bul’enkov NA (1985) Doklady Akademii nauk SSSR 284(6):1392–1396 (in Russian)

    Google Scholar 

  78. Bul’enkov NA (1985) Dokl Phys Chem 284:1030

    Google Scholar 

  79. Zheligovskaya EA, Bulienkov NA (2008) Kristallografiya 53(6):1126–1137 (in Russian)

    Google Scholar 

  80. Zheligovskaya EA, Bulienkov NA (2008) Crystallogr Rep 53(6):1068–1079

    Article  CAS  Google Scholar 

  81. Zheligovskaya EA, Bulienkov NA (2012) Kristallografiya 57(6):859–867 (in Russian)

    Google Scholar 

  82. Zheligovskaya EA, Bulienkov NA (2012) Crystallogr Rep 57(6):773–780

    Article  CAS  Google Scholar 

  83. Bul’enkov NA (1986) Doklady Akademii nauk SSSR 290(3):605–610 (in Russian)

    Google Scholar 

  84. Bul’enkov NA, Zheligovskaya EA (2015) Kristallografiya 60(3):467–476 (in Russian)

    Google Scholar 

  85. Bul’enkov NA, Zheligovskaya EA (2015) Crystallogr Rep 60(3):418–426

    Article  Google Scholar 

  86. Chernogorova OP, Drozdova EI, Blinov VM, Ovchinnikova IN, Bul’enkov NA (2009) In: Proceedings of the annual world conference “Carbon 2009”. Biarritz (France), June 14–19, 2009, pp 904-1–904-4

  87. Chernogorova OP, Drozdova EI, Blinov VM, Bul’enkov NA (2008) Rossiiskie Nanotekhnologii 3(5–6):150–157 (in Russian)

    Google Scholar 

  88. Chernogorova OP, Drozdova EI, Blinov VM, Bul’enkov NA (2008) Nanotechnologies in Russia 3(5–6):344–351

    Article  Google Scholar 

  89. Bulienkov NA, Zheligovskaya EA, Klechkovskaya VV, Ivakin GI (2011) Kristallografiya 56(3):555–564 (in Russian)

    Google Scholar 

  90. Bulienkov NA, Zheligovskaya EA, Klechkovskaya VV, Ivakin GI (2011) Crystallogr Rep 56(3):517–525

    Article  CAS  Google Scholar 

  91. Bul’enkov NA (2005) Nanotechnologies and change of the type of rationality. In: Metodologiya nauki: status i programmy (methodology of science: status and programs). Institut filosofii RAN (Institute of Phylosophy RAS), Moscow, pp 223–254 (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Bulienkov.

Additional information

Dedicated to A. L. Mackey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulienkov, N.A., Zheligovskaya, E.A. Generalized crystallography and bound-water modular structures determining morphogenesis and size of biosystems. Struct Chem 28, 75–103 (2017). https://doi.org/10.1007/s11224-016-0837-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0837-3

Keywords

Navigation