Structural Chemistry

, Volume 28, Issue 3, pp 617–624 | Cite as

Field-induced π-polarization in barrelene derivatives: a computational study based on structural variation

Original Research


Barrelene, H–C(CH=CH)3C–H, is an unsaturated polycyclic hydrocarbon containing three isolated double bonds in a non-planar arrangement. We have studied the transmission of field effects through the barrelene framework by analyzing the small structural changes occurring in the phenyl group of many Ph–C(CH=CH)3C–X molecules, where X is a variable substituent. Molecular geometries have been determined by quantum chemical calculations at the HF/6-31G* and B3LYP/6-311++G** levels of theory. Comparison with the results obtained for the corresponding saturated molecules, the bicyclo[2.2.2]octane derivatives Ph–C(CH2–CH2)3C–X, reveals a small, but significant, field-induced π-polarization of the barrelene cage, especially when the remote substituent is a charged group. Additional evidence of π-polarization is obtained by comparing the electric dipole moments of the two sets of uncharged molecules. The structural variation of the barrelene cage caused by the variable substituent in Ph–C(CH=CH)3C–X molecules has also been investigated. It is much larger than that of the phenyl group and depends primarily on the electronegativity of the substituent. Particularly pronounced is the concerted variation of the non-bonded distance between the bridgehead carbons of the cage, r(C···C) 1 BARR , and the average of the three C–C–C angles at the cage carbon bonded to the variable substituent, α 1 BARR . A scattergram of r(C···C) 1 BARR versus the corresponding parameter for bicyclo[2.2.2]octane derivatives, r(C···C) 1 BCO , shows that the variation of r(C···C) 1 BARR becomes gradually less pronounced than that of r(C···C) 1 BCO as the electronegativity of the substituent increases.


Substituted barrelenes Substituted bicyclo[2.2.2]octanes Structural variation Dipole moments Field effect Electronegativity effect Field-induced π-polarization 



This work was supported by the CINECA Supercomputing Center, Bologna, with Project IsC10_DYNGEO_E, and by the Department of Chemistry, Sapienza - University of Rome, through the Supporting Research Initiative 2013.

Supplementary material

11224_2016_829_MOESM1_ESM.doc (599 kb)
Supplementary material 1 (DOC 599 kb)


  1. 1.
    Campanelli AR, Domenicano A, Ramondo F (2006) J Phys Chem A 110:10122–10129CrossRefGoogle Scholar
  2. 2.
    Campanelli AR, Domenicano A, Piacente G, Ramondo F (2010) J Phys Chem A 114:5162–5170CrossRefGoogle Scholar
  3. 3.
    Campanelli AR, Domenicano A, Ramondo F (2011) Struct Chem 22:449–457CrossRefGoogle Scholar
  4. 4.
    Campanelli AR, Domenicano A (2014) Struct Chem 25:691–698CrossRefGoogle Scholar
  5. 5.
    Campanelli AR, Domenicano A, Ramondo F (2012) J Phys Chem A 116:8209–8217CrossRefGoogle Scholar
  6. 6.
    Campanelli AR, Domenicano A (2013) Struct Chem 24:867–876CrossRefGoogle Scholar
  7. 7.
    Campanelli AR (2013) Struct Chem 24:859–866CrossRefGoogle Scholar
  8. 8.
    Campanelli AR, Domenicano A (2015) Struct Chem 26:1259–1271CrossRefGoogle Scholar
  9. 9.
    Campanelli AR, Domenicano A, Hnyk D (2015) J Phys Chem A 119:205–214CrossRefGoogle Scholar
  10. 10.
    Zimmerman HE, Paufler RM (1960) J Am Chem Soc 82:1514–1515CrossRefGoogle Scholar
  11. 11.
    Zimmerman HE, Grunewald GL, Paufler RM, Sherwin MA (1969) J Am Chem Soc 91:2330–2338CrossRefGoogle Scholar
  12. 12.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashy R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc., WallingfordGoogle Scholar
  13. 13.
    Sałek P, Helgaker T, Vahtras O, Ågren H, Jonsson D, Gauss J (2005) Mol Phys 103:439–450CrossRefGoogle Scholar
  14. 14.
    Soscún H, Castellano O, Bermúdez Y, Toro C, Cubillán N, Hinchliffe A, Phu XN (2006) Int J Quantum Chem 106:1130–1137CrossRefGoogle Scholar
  15. 15.
    Campanelli AR, Domenicano A, Ramondo F (2003) J Phys Chem A 107:6429–6440CrossRefGoogle Scholar
  16. 16.
    Campanelli AR, Domenicano A, Macchiagodena M, Ramondo F (2011) Struct Chem 22:1131–1141CrossRefGoogle Scholar
  17. 17.
    Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2004) J Phys Chem A 108:4940–4948CrossRefGoogle Scholar
  18. 18.
    Domenicano A, Murray-Rust P, Vaciago A (1983) Acta Crystallogr B 39:457–468CrossRefGoogle Scholar
  19. 19.
    Topsom RD (1976) Prog Phys Org Chem 12:1–20CrossRefGoogle Scholar
  20. 20.
    Reynolds WF (1983) Prog Phys Org Chem 14:165–203CrossRefGoogle Scholar
  21. 21.
    Taft RW, Topsom RD (1987) Prog Phys Org Chem 16:1–83Google Scholar
  22. 22.
    Böhm S, Exner O (2004) J Mol Struct (Theochem) 682:171–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistrySapienza - University of RomeRomeItaly
  2. 2.Department of Physical and Chemical SciencesUniversity of L’AquilaL’AquilaItaly

Personalised recommendations