Skip to main content
Log in

Coordination capabilities of anthracene ligand in binuclear sandwich complexes: DFT investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

DFT calculations with full geometry optimization using BP86 and mPW1PW91 functionals have been carried out on binuclear hypothetical compounds of the type M2(Ant)2 (Ant = anthracene). This work investigates the possibility for such compounds to exist for the M = Ti–Ni series. The analysis of their electronic and molecular structures in relation to their electron counts allows a comprehensive rationalization of the bonding of these compounds. A very rich coordination chemistry of anthracene has been highlighted. This richness comes from the very large electronic and structural flexibility of anthracene, which is able to adapt itself to the electronic demand of metals. Each of the C6 rings of anthracenes can be coordinated in various hapticities and symmetries depending on the nature of the metal and the structure’ spin state. This flexibility favors the possibility of existence of several isomers closeness in energy. The asymmetry between the two anthracenes causes binuclear complexes to exhibit very different coordination with different oxidation states. In some cases, the M–M bonding is not privileged despite the metals’ electronic deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Scheme 4

Similar content being viewed by others

References

  1. Ceccon A, Santi S, Orian L, Bisello A (2004) Electronic communication in heterobinuclear organometallic complexes through unsaturated hydrocarbon bridges. Coord Chem Rev 248:683–724

    Article  CAS  Google Scholar 

  2. Barlow S, O’Hare D (1997) Metal − metal interactions in linked metallocenes. Chem Rev 97:637

    Article  CAS  Google Scholar 

  3. Aguirre-Etcheverry P, O’Hare D (2010) Electronic communication in heterobinuclear organometallic complexes through unsaturated hydrocarbons bridges. Chem Rev 110:4839–4864

    Article  CAS  Google Scholar 

  4. Bendjaballah S, Kahlal S, Costuas K, Bevillon E, Saillard JY (2006) The versatility of pentalene coordination to transition metals: a density functional theory investigation. Chem Eur J 12:2048–2065

    Article  CAS  Google Scholar 

  5. Zendaoui SM, Zouchoune B (2013) Molecular properties and electronic structure of phenazine ligand in binuclear molybdenum and manganese metal complexes: a density functional theory study. Polyhedron 51:123

    Article  CAS  Google Scholar 

  6. Korichi H, Zouchoune F, Zendaoui S-M, Zouchoune B, Saillard J-Y (2010) The coordination chemistry of azulene: a comprehensive DFT investigation. Organometallics 29:1693

    Article  CAS  Google Scholar 

  7. Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Decamethyldizincocene, a stable compound of Zn(I) with a Zn–Zn Bond. Science 305:1136–1138

    Article  CAS  Google Scholar 

  8. Kaltz T-J, Acton N (1972) Bis(pentalenylnickel). J Am Chem Soc 94:3281

    Article  Google Scholar 

  9. Kaltz TJ, Acton N, McGinnis J (1972) Sandwiches of iron and cobalt with pentalene. J Am Chem Soc 94:6205

    Article  Google Scholar 

  10. Balazs G, Clock FGN, Gagliardi L, Green JC, Harrison A, Hitchcock PB, Shahi ARM, Summerscales OT (2008) A dichromium(II) bis(η 8-pentalene) double-sandwich complex with a spin equilibrium: synthetic, structural, magnetic, and theoretical studies. Organometallics 27:2013

    Article  CAS  Google Scholar 

  11. Balazs G, Cloke FG, Harrison A, Hitchcock PB, Green J, Summerscales OT, (2007) Mn2 bis(pentalene): a mixed-spin bimetallic with two extremes of bonding within the same molecule. Chem Commun. doi:10.1039/b614765h

  12. Kuchta MC, Clock FGN, Hitchcock PB (1998) A bimetallic bis-pentalene sandwich complex: synthesis and Structure of Mo2[C8H4(1,4-SiPr i3 )2]2. Organometallics 17:1934

    Article  CAS  Google Scholar 

  13. Clock FGN, Green JC, Jardine CN, Kuchta MC (1999) Bonding in bis(pentalene)dimolybdenum: density functional calculations on Mo2(C8H6)2 and photoelectron spectroscopy of Mo2(C8H4(1,4-SiPr i3 )2)2. Organometallics 18:1087

    Article  Google Scholar 

  14. Ashley AE, Cooper RT, Wildgoose GG, Green JC, O’Hare D (2008) Homoleptic permethylpentalene complexes: “double metallocenes” of the first-row transition metals. J Am Chem Soc 13:15662

    Article  Google Scholar 

  15. Jonas K, Rüsseler W, Krüger C, Raabe E (1986) Synthesis of diindenyldivanadium-a new variant of the reductive degradation of metallocenes and related compounds. Angew Chem Int Ed Engl 25:928

    Article  Google Scholar 

  16. Kilpatrick AFR, Green JC, Cloke FGN, Tsoureas N (2013) Bis(pentalene)di-titanium: a bent double-sandwich complex with a very short Ti–Ti bond. Chem Commun 49:9434

    Article  CAS  Google Scholar 

  17. Kilpatrick AFR, Green JC, Cloke FGN (2015) Bonding in complexes of bis(pentalene)dititanium, Ti2(C8H6)2. Organometallics 34:4830

    Article  CAS  Google Scholar 

  18. Smart JC, Pinsky BL (1977) The synthesis and characterization of bis(fulvalene)dinickel, in three oxidation levels. J Am Chem Soc 99:956

    Article  CAS  Google Scholar 

  19. Smart JC, Pinsky BL, Fredrih MF, Day VW (1979) Synthesis and characterization of bis(fulvalene)divanadium and the crystal structure of its oxidation product, bis(fulvalene)bis(acetonitrile)divanadium(III)(V–V) bis(hexafluorophosphate)-acetonitrile (1/1). J Am Chem Soc 101:4371

    Article  CAS  Google Scholar 

  20. Fernando HL, Bradely CA (2011) Indenyl ligands as supports for reactive, low-valent cobalt(I) fragments. Organometallic 30:2636

    Article  Google Scholar 

  21. Kaltz TJ, Schulman J (1964) The as-indacenyl dianion and bis(as-indacenyliron). J Am Chem Soc 86:3169

    Article  Google Scholar 

  22. Shuster V, Gambarotta S, Nikiforov GB, Budzelaar P (2013) Heterometallic aluminum–chromium phenazine and thiophenazine complexes. formation of a tetranuclear chromium(I) sandwich complex. Organometallics 32:2329

    Article  CAS  Google Scholar 

  23. Merzoug M, Zouchoune B (2014) Coordination diversity of the phenazine ligand in binuclear transition metal sandwich complexes: theoretical investigation. J Organomet Chem 770:68–77

    Article  Google Scholar 

  24. Wang L, Cai Z, Wang J, Lu J, Luo G, Lai L, Zhou J, Qin R, Gao Z, Yu D, Li G, Mei WN, Sanvito S (2008) Polymer-encapsulated gold-nanoparticle dimers: facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett 8:3640

    Article  CAS  Google Scholar 

  25. Zouchoune F, Zendaoui S-M, Bouchakri N, Djedouani A, Zouchoune B (2010) Electronic structure and vibrational frequencies in dehydroacetic acid (DHA) transition-metal complexes: a DFT study. J Mol Struct 945:78

    Article  CAS  Google Scholar 

  26. Farah S, Korichi H, Zendaoui SM, Saillard JY, Zouchoune B (2009) The coordination of azepine to transition-metal complexes: a DFT analysis. Inorg Chim Acta 362:3541

    Article  CAS  Google Scholar 

  27. Peng A, Zhang X, Li Q-S, King R-B, Scharfer HF III (2013) Coaxial versus perpendicular structures for a range of binuclear cyclopentadienylpalladium derivatives. New J Chem 37:775

    Article  CAS  Google Scholar 

  28. Wang H, Xie Y, King RB, Schaefer III HF (2008) Bis(cycloheptatrienyl) derivatives of the first-row transition metals: variable hapticity of the cycloheptatrienyl ring. Eur J Inorg Chem 2008:3698. doi:10.1002/ejic.200800299

    Article  Google Scholar 

  29. Fan Q, Feng H, Sun W, Li H, Xie Y, King R-B, Scharfer HF III (2013) A new type of sandwich compound: homoleptic bis(trimethylenemethane) complexes of the first row transition metals. New J Chem 37:1545

    Article  CAS  Google Scholar 

  30. Saiad A, Zouchoune B (2015) Electronic structure and bonding analysis of transition metal sandwich and half-sandwich complexes of triphenylene ligand. Can J Chem 93:1095–1108

    Article  Google Scholar 

  31. Chekkal F, Zendaoui SM, Zouchoune B, Saillard JY (2013) Structural and spin diversity of M(indenyl)2 transition-metal complexes: a DFT investigation. New J Chem 37:2293

    Article  CAS  Google Scholar 

  32. ADF2014.01, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, SCM

  33. Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure. Chem Phys 2:41

    Article  CAS  Google Scholar 

  34. te Velde G, Baerends EJ (1992) Numerical integration for polyatomic systems. J Comput Phys 99:84

    Article  Google Scholar 

  35. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chim Acc 99:391

    Google Scholar 

  36. Bickelhaupt FM, Baerends EJ (2000) In: Boyd DB, Lipkowitz KB (eds) Reviews of computational chemistry, vol 15. Wiley, New York, pp 1–37

    Chapter  Google Scholar 

  37. te Velde G, Bickelhaupt FM, Fonseca Guerra C, Van Gisbergen SJA, Baerends EJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931

    Article  Google Scholar 

  38. Vosko SD, Wilk L, Nusair M (1990) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Chem 58:1200

    Google Scholar 

  39. Becke AD (1986) Density functional calculations of molecular bond energies. J Chem Phys 84:4524

    Article  CAS  Google Scholar 

  40. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  41. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822

    Article  Google Scholar 

  42. Perdew JP (1986) Erratum: density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 34:7406

    Article  Google Scholar 

  43. Adamo C, Barone V (1998) Exchange functionals with improved long-range behaviour and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664

    Article  CAS  Google Scholar 

  44. Versluis L, Ziegler T (1988) The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration. J Chem Phys 88:322

    Article  CAS  Google Scholar 

  45. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. J Chem Phys 96:9005

    Article  CAS  Google Scholar 

  46. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. J Phys Chem 96:6937

    Article  CAS  Google Scholar 

  47. Flükiger P, Lüthi H-P, Portmann S, Weber J MOLEKEL, Version 4.3.win32 Swiss Center for Scientific Computing (CSCS), Switzerland, 2000–2001. http://www.cscs.ch/molekel/

  48. Weinhold F, Landis C-R (2005) Valency and bonding: a natural bond order donor acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  49. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Natural bond orbitals “analysis programs”. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  50. Fleischer EB, Stone AL, Dewar RBK, Wright JD, Keller CE, Pettit R (1966) The molecular structure of the complex of cyclooctatetraene and iron pentacarbonyl. J Am Chem Soc 88:3158

    Article  CAS  Google Scholar 

  51. Newton MG, King RB, Chang M, Gimeno J (1977) Novel bimetallic products from iron carbonyls and methylaminobis(difluorophosphine): an example of square pyramidal pentacoordinate iron(0). J Am Chem Soc 99:2802

    Article  CAS  Google Scholar 

  52. Wang H, Sun S, Wang H, King R-B (2016) Binuclear cyclooctatetraene–iron carbonyl complexes: examples of fluxionality and valence tautomerism. NJC. doi:10.1039/c5nj02307f

    Google Scholar 

  53. Li GG, Zhou L, Zhai X, Li QS, Xie Y, King R-B, SchaeferIII HF (2013) Binuclear methylaminobis(difluorophosphine) iron carbonyls: phosphorus–nitrogen bond cleavage in preference to iron–iron multiple bond formation. New J Chem 37:3294

    Article  CAS  Google Scholar 

  54. Zendaoui SM, Saillard JY, Zouchoune B (2016) Ten-electron donor indenyl anion in binuclear transition-metal sandwich complexes: electronic structure and bonding analysis. ChemistrySelect 5:940

    Article  Google Scholar 

  55. Wang H, Xie Y, King RB, SchaeferIII HF (2005) Binuclear Cyclopentadienylcobalt carbonyls: comparison with binuclear iron carbonyls. J Am Chem Soc 127:11646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Zouchoune.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensalem, N., Zouchoune, B. Coordination capabilities of anthracene ligand in binuclear sandwich complexes: DFT investigation. Struct Chem 27, 1781–1792 (2016). https://doi.org/10.1007/s11224-016-0798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0798-6

Keywords

Navigation