Skip to main content
Log in

Proton transfer in the molecular complexes of phosphorus acids with DMSO

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Proton transfer processes in various H-bonded complexes of phosphoric (H3PO4), phosphorous (H3PO3) and methylphosphonic (H2MePO3) acids with dimethyl sulfoxide (DMSO), i.e., (acid)2–DMSO, acid–(DMSO) n for n = 1, 2 and H3PO4–(DMSO)3 have been studied. The potential energy surface (PES) for proton transfer was investigated using the B3LYP level of theory, and the solvent effect on the PES was included using the conductor polarized continuum model. The energy curves for proton transfer from acid to DMSO oxygen atom in all investigated complexes represent single-well potentials, if no constraints are imposed on the system. The PES obtained by optimizing the geometry of each complex at fixed O···O distances has two nonsymmetric minima with respect to the energy barrier. In these cases, the distance at which a barrier starts to rise is slightly different. The energy barrier for proton transfer in all considered complexes increases in the series of acids: H3PO4 < H3PO3 < H2MePO3. The energies associated with proton transfer in the complexes of all investigated acid with DMSO become higher with increasing number of DMSO molecules. For all complexes, the effect of DMSO environment favors a proton transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  2. Bell RP (1980) The tunnel effect in chemistry. Chapman and Hall, New York

    Book  Google Scholar 

  3. Melander L, Saunders WH (1980) Reaction rates of isotopic molecules. Wiley, New York

    Google Scholar 

  4. Bender ML (1971) Mechanisms of homogeneous catalysis from protons to proteins. Wiley, New York

    Google Scholar 

  5. Basilevsky MV, Vener MV (2003) Theoretical investigations of proton and hydrogen atom transfer in the condensed phase. Russ Chem Rev 72:1–33

    Article  CAS  Google Scholar 

  6. Sobczyk L, Czarnik-Matusewicz B, Rospenk M, Obrzud M (2012) Proton transfer equilibria and critical behavior of H-bonding. J Atom Mol Opt Phys 217932:1–10

    Article  Google Scholar 

  7. Szafran M (1996) Recent aspects of the proton transfer reaction in H-bonded complexes. J Mol Struct 381:39–64

    Article  CAS  Google Scholar 

  8. Vilčiauskas L, Tuckerman ME, Melchior JP, Bester G, Kreuer K-D (2013) First principles molecular dynamics study of proton dynamics and transport in phosphoric acid/imidazole (2:1) system. Solid State Ion 252:34–39

    Article  Google Scholar 

  9. Fadeeva JA, Safonova LP, Persson I (2010) Physico-chemical and structural characterization of the binary system phosphoric acid–N,N-dimethylformamide. Phys Chem Chem Phys 12:8977–8984

    Article  CAS  Google Scholar 

  10. Li S, Fried JR (2013) Ab initio study of proton transfer and interfacial properties in phosphoric acid-doped polybenzimidazole. Macromol Theory Simul 22:410–425

    Article  CAS  Google Scholar 

  11. Shirata K, Kawauchi S (2015) Effect of benzimidazole configuration in polybenzimidazole chain on interaction with phosphoric acid: a DFT study. J Phys Chem B 119:592–603

    Article  CAS  Google Scholar 

  12. Kreuer K-D (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  13. Sata T, Yoshida T, Matsusaki K (1996) Transport studies of phosphonic acid and sulfonic acid cation exchange membranes. J Membr Sci 120:101–110

    Article  CAS  Google Scholar 

  14. Schuster M, Rager T, Noda A, Kreuer KD, Maier J (2005) About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5:355–365

    Article  CAS  Google Scholar 

  15. Munson RA (1964) Self-dissociative equilibria in molten phosphoric acid. J Phys Chem 68:3374–3377

    Article  CAS  Google Scholar 

  16. Dippel T, Kreuer KD, Lassègues JC, Rodriguez D (1993) Proton conductivity in fused phosphoric acid: a 1H/31P PFG-NMR and QNS study. Solid State Ion 61:41–46

    Article  CAS  Google Scholar 

  17. Vilčiauskas L, Tuckerman ME, Bester G, Paddison SJ, Kreuer K-D (2012) The mechanism of proton conduction in phosphoric acid. Nat Chem 4:461–466

    Article  Google Scholar 

  18. Aihara Y, Sonai A, Hattori M, Hayamizu K (2006) Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR. J Phys Chem B 110:24999–25006

    Article  CAS  Google Scholar 

  19. Schuster M, Kreuer K-D, Steininger H, Maier J (2008) Proton conductivity and diffusion study of molten phosphonic acid H3PO3. Solid State Ion 179:523–528

    Article  CAS  Google Scholar 

  20. Vilciauskas L, Paddison SJ, Kreuer K-D (2009) Ab initio modeling of proton transfer in phosphoric acid clusters. J Phys Chem A 113:9193–9201

    Article  CAS  Google Scholar 

  21. Krest’yaninov MA, Kiselev MG, Safonova LP (2015) Ab initio calculations of proton transfer in dimethylformamide-phosphoric acid complexes of 1:1 composition. Russ J Phys Chem A 89:608–615

    Article  Google Scholar 

  22. Joswig J-O, Hazebroucq S, Seifert G (2007) Properties of the phosphonic-acid molecule and the proton transfer in the phosphonic-acid dimer. J Mol Struct Theochem 816:119–123

    Article  CAS  Google Scholar 

  23. Li T, Wlaschin A, Balbuena PB (2001) Theoretical studies of proton transfer in water and model polymer electrolyte systems. Ind Eng Chem Res 40:4789–4800

    Article  CAS  Google Scholar 

  24. Fedorova IV, Safonova LP (2016) Influence of solvent environment using the CPCM model on the H-bond geometry in the complexes of phosphorus acids with DMSO. Struct Chem. doi:10.1007/s11224-016-0744-7

    Google Scholar 

  25. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  26. Khatuntseva EA, Krest’yaninov MA, Fedorova IV, Safonova LP (2015) Hydrogen bonds in complexes of phosphonic and metylphosphonic acids with dimethylformamide. Russ J Phys Chem A 89:2248–2253

    Article  CAS  Google Scholar 

  27. Fedorova IV, Khatuntseva EA, Krest’yaninov MA, Safonova LP (2016) C-PCM based calculation of energy profiles for proton transfer in phosphorus-containing acid–N,N-dimethylformamide complexes. Russ J Phys Chem A 90:293–299

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A.01. Gaussian, Inc., Wallingford

    Google Scholar 

  29. Riddick JA, Bunger WB (1970) Organic solvents, vol. II of techniques of organic chemistry, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  30. Kreuer KD (2000) On the complexity of proton conduction phenomena. Solid State Ion 136–137:149–160

    Article  Google Scholar 

  31. Morrone JA, Haslinger KE, Tuckerman ME (2006) Ab initio molecular dynamics simulation of the structure and proton transport dynamics of methanol-water solutions. J Phys Chem B 110:3712–3720

    Article  CAS  Google Scholar 

  32. Shun-Li O, Nan-Nan W, Jing-Yao L, Cheng-Lin S, Zuo-Wei L, Shu-Qin G (2010) Investigation of hydrogen bonding in neat dimethyl sulfoxide and binary mixture (dimethyl sulfoxide + water) by concentration-dependent Raman study and ab initio calculation. Chin Phys B 19:123101–123107

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Russian Foundation for Basic Research (Nos. 14-03-00481, 15-43-03088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Fedorova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, I.V., Safonova, L.P. Proton transfer in the molecular complexes of phosphorus acids with DMSO. Struct Chem 27, 1561–1567 (2016). https://doi.org/10.1007/s11224-016-0786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0786-x

Keywords

Navigation