Skip to main content
Log in

Influence of solvent environment using the CPCM model on the H-bond geometry in the complexes of phosphorus acids with DMSO

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical calculations of structure and energies of various H-bonded complexes of phosphoric, phosphorous and methylphosphonic acids and their dimers with dimethylsulfoxide (DMSO), i.e., (acid) n –DMSO and acid–(DMSO) m for n = 1, 2 and m = 2, 3 have been carried out. The polar solvent effect is taken into account by using the CPCM model. It has been found that in DMSO environment the H-bonds in all complexes of investigated acid with DMSO are sizably stronger than the ones in the gas phase. At B3LYP-CPCM computation, the H-bonds between all investigated acid dimers and DMSO are significantly shorter than those found for complexes of corresponding acids with other compositions. The H-bonding interaction in acid–(DMSO) m for m = 1–3 becomes slightly weaker with increasing number DMSO molecules. The strength of the H-bond in all investigated complexes increases in the series of acids: (HO)2MePO < (HO)2P(O)H < H3PO4. Additionally, quantum theory of ‘atoms in molecules’ and natural bond orbitals method have been applied to analyze H-bond interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Korbridge DEC (1985) Phosphorus—an outline of its chemistry, biochemistry and technology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  2. Kreuer KD (1996) Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  3. Munson RA (1964) J Phys Chem 68:3374–3377

    Article  CAS  Google Scholar 

  4. Lagier CM, Zuriaga M, Monti G et al (1996) J Phys Chem Solids 57:1183–1190

    Article  CAS  Google Scholar 

  5. Ewig CS, Van Wazer JR (1985) J Am Chem Soc 107:1965–1971

    Article  CAS  Google Scholar 

  6. Yekutiel M, Lane JR, Gupta P et al (2010) J Phys Chem A 114:7544–7552

    Article  CAS  Google Scholar 

  7. Range K, McGrath MJ, Lopez X et al (2004) J Am Chem Soc 126:1654–1665

    Article  CAS  Google Scholar 

  8. Fedorova IV, Krishtal SP, Kiselev MG, Safonova LP (2006) Russ J Phys Chem 80:S7–S13

    Article  CAS  Google Scholar 

  9. Heggen B, Roy S, Müller-Plathe F (2008) J Phys Chem 112:14209–14215

    CAS  Google Scholar 

  10. Joswig J-O, Hazebroucq S, Seifert G (2007) J Mol Struct Theochem 816:119–123

    Article  CAS  Google Scholar 

  11. Khatuntseva EA, Krest’yaninov MA, Fedorova IV et al (2015) Russ J Phys Chem A 89:2264–2269

    Article  Google Scholar 

  12. Sullivan PA, Sumathi R, Green WH, Tester JW (2004) Phys Chem Chem Phys 6:4296–4309

    Article  CAS  Google Scholar 

  13. Vilciauskas L, Paddison SJ, Kreuer K-D (2009) J Phys Chem A 113:9193–9201

    Article  CAS  Google Scholar 

  14. Paddison SJ, Kreuer K-D, Maier J (2006) Phys Chem Chem Phys 8:4530–4542

    Article  CAS  Google Scholar 

  15. Kraikin LS, Grikina OE, Vilkov LV et al (2003) J Mol Struct 658:153–170

    Article  Google Scholar 

  16. Yue B, Yan L, Han S, Xie L (2013) J Phys Chem B 117:7941–7949

    Article  CAS  Google Scholar 

  17. Gonzalez L, Mo O, Yanez M, Elguero J (1998) J Chem Phys 109:2685–2693

    Article  CAS  Google Scholar 

  18. Pereira RP, Felisberti MI, Rocco AM (2006) Polymer 47:1414–1422

    Article  CAS  Google Scholar 

  19. Hossain MA, Isiklan M, Pramanik A et al (2012) Cryst Growth Des 12:567–571

    Article  CAS  Google Scholar 

  20. Kołaski M, Cho SJ (2012) Bull Korean Chem Soc 33:1998–2004

    Article  Google Scholar 

  21. Park SW, Kim CW, Lee JH et al (2011) J Phys Chem A 115:11355–11361

    Article  CAS  Google Scholar 

  22. Wilson CC, Morrison CA (2002) Chem Phys Lett 362:85–89

    Article  CAS  Google Scholar 

  23. Krawietz TR, Lin P, Lotterhos KE et al (1998) J Am Chem Soc 120:8502–8511

    Article  CAS  Google Scholar 

  24. Zhang D, Yan L (2010) J Phys Chem B 114:12234–12241

    Article  CAS  Google Scholar 

  25. Ilczyszyn MM (2002) J Mol Struct 611:119–129

    Article  CAS  Google Scholar 

  26. Ilczyszyn MM, Ratajczak H (1996) J Mol Struct 375:213–222

    CAS  Google Scholar 

  27. Krest’yaninov MA, Kiselev MG, Safonova LP (2012) Russ J Phys Chem A 86:1847–1854

    Article  Google Scholar 

  28. Fedorova IV, Krestyaninov MA, Kiselev MG, Safonova LP (2016) J Mol Struct 1106:424–429

    Article  CAS  Google Scholar 

  29. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669–681

    Article  CAS  Google Scholar 

  30. Riddick JA, Bunger WB (1970) Organic solvents, vol. II of techniques of organic chemistry, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  31. Shun-Li O, Nan-Nan W, Jing-Yao L et al (2010) Chin Phys B 19:123101–123107

    Article  Google Scholar 

  32. Steiner T (2002) Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  33. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  34. Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor—acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.01. Gaussian Inc., Wallingford

    Google Scholar 

  36. Koch W, Holthausen MC (2001) A Chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  37. Scheiner AC, Baker J, Andzelm JW (1997) J Comput Chem 18:775–795

    Article  CAS  Google Scholar 

  38. Sharma A, Ohanessian G, Clavaguéra C (2014) J Mol Model 20:2426–2434

    Article  Google Scholar 

  39. Blessing RH (1988) Acta Cryst B44:334–340

    Article  CAS  Google Scholar 

  40. Souhassou M, Espinosa E, Lecompte C, Blessing RH (1995) J Acta Cryst B 51:661–668

    Article  Google Scholar 

  41. Furberg S (1955) Acta Chem Scand 9:1557–1566

    Article  CAS  Google Scholar 

  42. Tromp RH, Spieser SH, Neilson GW (1999) J Chem Phys 110:2145–2150

    Article  CAS  Google Scholar 

  43. Furberg S, Landmark P (1957) Acta Chem Scand 11:1505–1511

    Article  CAS  Google Scholar 

  44. Becker G, Hausen H-D, Mundt O et al (1990) Z Anorg Allg Chem 591:17–31

    Article  CAS  Google Scholar 

  45. Reuter H, Reichelt M (2014) Acta Cryst E 70:o353

    Article  CAS  Google Scholar 

  46. Thomas R, Shoemaker CB, Eriks K (1966) Acta Cryst 21:12–20

    Article  CAS  Google Scholar 

  47. Frolov YL, Guchik IV, Shagun VA et al (2003) J Struct Chem 44:927–931

    Article  CAS  Google Scholar 

  48. Shun-Li O, Nan-Nan W, Jing-Yao L et al (2010) Chin Phys B 19:123101(7)

    Article  Google Scholar 

  49. Van Duijneveldt FB, Van Duijneveldt-van JGCM, Van Lenthe JH (1994) Chem Rev 94:1873–1885

    Article  Google Scholar 

  50. Keith TA (2010) AIMAll (Version 10.05.04) (aim.tkgristmill.com)

  51. Weinhold F (1997) J Mol Struct Theochem 398–399:181–197

    Article  Google Scholar 

  52. Koch U, Popelier PLA (1995) J Chem Phys 99:9747–9754

    Article  CAS  Google Scholar 

  53. Popelier PLA (1998) J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  54. Lyssenko KA, Antipin MYu (2006) Russ Chem Bull Int Ed 55:1–15

    Article  CAS  Google Scholar 

  55. Espinosa E, Molins E, Lecomte C (1998) J Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  56. Safonova LP, Fadeeva YA, Pryakhin AA (2009) Russ J Phys Chem 83:1747–1750

    Article  CAS  Google Scholar 

  57. Sprik M, Hutter J, Parrinello M (1996) J Chem Phys 105:1142–1152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Russian Foundation for Basic Research (Project No. 15-43-03088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Fedorova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, I.V., Safonova, L.P. Influence of solvent environment using the CPCM model on the H-bond geometry in the complexes of phosphorus acids with DMSO. Struct Chem 27, 1189–1198 (2016). https://doi.org/10.1007/s11224-016-0744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0744-7

Keywords

Navigation