Skip to main content

Advertisement

Log in

The effect of heteroatoms and end groups of polymethines on the all-optical switching processing application: a CC2 calculation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure–properties relationship of heterocyclic polymethines on the all-optical switching processing (AOSP) is studied by CC2 method. In particular, the excitation energies of the first and second excited states (E ge and E ge ) and the corresponding ratio (R ee  = E ge /E ge, energy window width) are evaluated. The comparable energy gap between HOMO and HOMO − 1 (π type) and between LUMO and LUMO + 1 (π* type) is the key in keeping R ee large. Moreover, only a significant increase of such energy gap can result in the increase in R ee because the energy gap is a poor description of excitation energy. The results show that the heavy heteroatoms decrease the E ge and E ge as expected compared to light atoms such as carbon. For five-membered heterocyclic polymethines and their derivatives (two heteroatoms in total), the R ee is stable around 1.7 reflecting the nature of this system: The additional heteroatoms have little effects on the width of energy window. In the case of six-membered heterocyclic polymethines and their derivatives, the decrease in excitation energy is more effective compared to the former due to the relative large effective length of the end group, which can thus help avoiding the symmetry breaking. The effect of heteroatoms on R ee is clear that it helps keeping the energy window open compared to carbon atom. The heavier the heteroatom is, the higher R ee value will be when it is on the ortho position. Consequently, at least one heteroatom is necessary on the design of polymethines for AOSP application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hales JM, Matichak J, Barlow S, Ohira S, Yesudas K, Bredas JL, Perry JW, Marder SR (2010) Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit. Science 327:1485–1488

    Article  CAS  Google Scholar 

  2. Hales JM, Barlow S, Kim H, Mukhopadhyay S, Brédas J-L, Perry JW, Marder SR (2014) Design of organic chromophores for all-optical signal processing applications. Chem Mater 26:549–560

    Article  CAS  Google Scholar 

  3. Mukhopadhyay S, Risko C, Marder SR, Brédas J-L (2012) Polymethine dyes for all-optical switching applications: a quantum-chemical characterization of counter-ion and aggregation effects on the third-order nonlinear optical response. Chem Sci 3:3103

    Article  CAS  Google Scholar 

  4. Hales JM, Zheng S, Barlow S, Marder SR, Perry JW (2006) Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing. J Am Chem Soc 128:11362–11363

    Article  CAS  Google Scholar 

  5. Gieseking RL, Mukhopadhyay S, Risko C, Marder SR, Bredas JL (2014) 25th anniversary article: design of polymethine dyes for all-optical switching applications—guidance from theoretical and computational studies. Adv Mater 26:68–83

    Article  CAS  Google Scholar 

  6. Wang C, Yuan Y, Tian X, Sun J, Shao H, Sun Z (2013) A theoretical study on the structural dependences of third-order optical nonlinearities of heterocycle-substituted polymethine cyanine chromophores. Chem Phys Lett 583:185–189

    Article  CAS  Google Scholar 

  7. Dirk CW, Cheng L-T, Kuzyk MG (1992) A simplified three-level model describing the molecular third-order nonlinear optical susceptibility. Int J Quantum Chem 43:27–36

    Article  CAS  Google Scholar 

  8. Orr BJ, Ward JF (1971) Perturbation theory of the non-linear optical polarization of an isolated system. Mol Phys 20:513–526

    Article  CAS  Google Scholar 

  9. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (alpha, beta, and gamma) and bond length alternation. J Am Chem Soc 116:10703–10714

    Article  CAS  Google Scholar 

  10. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem Rev 94:243–278

    Article  CAS  Google Scholar 

  11. Matichak JD, Hales JM, Barlow S, Perry JW, Marder SR (2011) Dioxaborine- and indole-terminated polymethines: effects of bridge substitution on absorption spectra and third-order polarizabilities. J Phys Chem A 115:2160–2168

    Article  CAS  Google Scholar 

  12. Matichak JD, Hales JM, Ohira S, Barlow S, Jang SH, Jen AK, Bredas JL, Perry JW, Marder SR (2010) Using end groups to tune the linear and nonlinear optical properties of bis(dioxaborine)-terminated polymethine dyes. ChemPhysChem 11:130–138

    Article  CAS  Google Scholar 

  13. Tolbert LM, Zhao X (1997) Beyond the cyanine limit: peierls distortion and symmetry collapse in a polymethine dye. J Am Chem Soc 119:3253–3258

    Article  CAS  Google Scholar 

  14. Gieseking RL, Mukhopadhyay S, Risko C, Brédas J-L (2014) Impact of the nature of the excited-state transition dipole moments on the third-order nonlinear optical response of polymethine dyes for all-optical switching applications. ACS Photonics 1:261–269

    Article  CAS  Google Scholar 

  15. Fu J, Padilha LA, Hagan DJ, Van Stryland EW, Przhonska OV, Bondar MV, Slominsky YL, Kachkovski AD (2007) Molecular structure—two-photon absorption property relations in polymethine dyes. J Opt Soc Am B 24:56

    Article  CAS  Google Scholar 

  16. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Ensley TR, Bondar MV, Gerasov AO, Kovtun YP, Shandura MP, Kachkovski AD, Hagan DJ, Van Stryland EW (2010) Efficient two-photon absorbing acceptor-pi-acceptor polymethine dyes. J Phys Chem A 114:6493–6501

    Article  CAS  Google Scholar 

  17. Le Guennic B, Jacquemin D (2015) Taking up the cyanine challenge with quantum tools. Acc Chem Res 48:530

    Article  Google Scholar 

  18. Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856

    Article  CAS  Google Scholar 

  19. Yesudas K (2013) Cationic cyanine dyes: impact of symmetry-breaking on optical absorption and third-order polarizabilities. Phys Chem Chem Phys 15:19465–19477

    Article  CAS  Google Scholar 

  20. Send R, Valsson O, Filippi C (2011) Electronic excitations of simple cyanine dyes: reconciling density functional and wave function methods. J Chem Theory Comput 7:444–455

    Article  CAS  Google Scholar 

  21. Schreiber M, Silva-Junior MR, Sauer SP, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 128:134110

    Article  Google Scholar 

  22. Frisch MJ, GWT HB, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. B.01 edn. Gaussian, Inc., Wallingford CT

  23. Furche F, Ahlrichs R, Hättig C, Klopper W, Sierka M, Weigend F (2014) Turbomole. Wiley Interdiscip Rev Comput Mol Sci 4:91–100

    Article  CAS  Google Scholar 

  24. Jacquemin D, Chibani S, Le Guennic B, Mennucci B (2014) Solvent effects on cyanine derivatives: a PCM investigation. J Phys Chem A 118:5343–5348

    Article  CAS  Google Scholar 

  25. Bertolino CA, Ferrari AM, Barolo C, Viscardi G, Caputo G, Coluccia S (2006) Solvent effect on indocyanine dyes: a computational approach. Chem Phys 330:52–59

    Article  CAS  Google Scholar 

  26. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  27. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  28. Bricks JL, Kachkovskii AD, Slominskii YL, Gerasov AO, Popov SV (2015) Molecular design of near infrared polymethine dyes: a review. Dyes Pigm 121:238–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fundamental Research Funds for the Central Universities (22A201514002), Shanghai leading academic discipline project (No. B502), Shanghai key laboratory project (No. 08DZ2230500). We thank Georgia Institute of Technology for the computer resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yizhong Yuan or Xiaohui Tian.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yuan, Y., Tian, X. et al. The effect of heteroatoms and end groups of polymethines on the all-optical switching processing application: a CC2 calculation. Struct Chem 27, 1211–1220 (2016). https://doi.org/10.1007/s11224-016-0746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0746-5

Keywords

Navigation