Skip to main content
Log in

DFT/TD-DFT study on halogen doping and solvent contributions to the structural and optoelectronic properties of poly[3,6-carbazole] and poly[indolo(3,2-b)-carbazole]

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The polycarbazoles have been proved to be a good organic semiconductor. These are investigated by quantum chemical studies using B3LYP density functional theory (DFT), and the studies have given a detailed understanding on the impact of carbazole units and an introduction to the electron donating on the optoelectronic properties. The electron withdrawing groups of halogen atoms (chlorine, bromine and iodine) have been substituted into the side chain of the poly[3,6-carbazoles] (PCs) and poly[indolo(3,2-b)-carbazoles] (PICs) and analysed. The band was assigned in the gas phase at 354.8 and 365.1 nm for PCs and PICs which are in good agreement with experimental values of 350 and 390 nm. The calculated results show that the selected three halogen derivatives exhibit a strong blue shift in the toluene solvent medium, with high electronic transition. It is found that PCs, PICs and their derivatives have a narrow band derived in the conduction band, and it is composed of 3p, 4p and 5p states; thus, the energy gap of PCs and PICs increased between the highest occupied molecular orbital and lowest unoccupied molecular orbital energy level by the addition of electron acceptor group atoms. The doped PC and PIC electronegativities are well plotted by an electrostatic potential map, and the plot reveals that chlorine-doped PCs and PICs have less electronegativity and bromine-doped polymer has high electronegativity than that of the chlorine-doped polymers. The results obtained from these studies will expose the affairs between the molecular geometry and electronic and optical properties of the investigated polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010

    Article  CAS  PubMed  Google Scholar 

  2. Pron A, Gawrys P, Zagorska M, Djuradoa D, Demadrillea R (2010) Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques. Chem Soc Rev 39:2577–2632

    Article  CAS  PubMed  Google Scholar 

  3. Boudreault PLT, Najari A, Leclerc M (2011) Processable low-bandgap polymers for photovoltaic applications. Chem Mater 23:456–469

    Article  CAS  Google Scholar 

  4. Huang J, Su JH, Li X, Lam MK, Fung KM, Fan HH, Cheah KW, Chen CH, Tian HJ (2001) Bipolar anthracene derivatives containing hole- and electron-transporting moieties for highly efficient blue electroluminescence devices. Mater Chem 21:2957–2964

    Article  CAS  Google Scholar 

  5. Leelavathi A, Mukherjee B, Nethravathi C, Kundu S, Dhivya M, Ravishankar N, Madras G (2013) Highly photoactive heterostructures of PbO quantum dots on TiO2. RSC Adv 3:20970–20977

    Article  CAS  Google Scholar 

  6. Facchetti A (2011) π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23:733–758

    Article  CAS  Google Scholar 

  7. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26

    Article  CAS  Google Scholar 

  8. Winder C, Saridifti NS (2004) Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J Mater Chem 14:1077

    Article  CAS  Google Scholar 

  9. Hoppe H, Saricifti NS (2004) Organic solar cells: an overview. J Mater Res 19:1924

    Article  CAS  Google Scholar 

  10. Coakley KM, McGehae MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533–4542

    Article  CAS  Google Scholar 

  11. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JB, Moses D, Leclere M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297

    Article  CAS  Google Scholar 

  12. Yang C, Kim JY, Cho S, Lee JK, Heeger AJ, Wudl F (2008) Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors. J Am Chem Soc 130:6444

    Article  CAS  PubMed  Google Scholar 

  13. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789

    Article  CAS  Google Scholar 

  14. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498

    Article  CAS  Google Scholar 

  15. Jenekhe SA, Yi SJ (2000) Efficient photovoltaic cells from semiconducting polymer heterojunctions. Appl Phys Lett 77:2635

    Article  CAS  Google Scholar 

  16. Jenekhe SA, Yi SJ (2000) Highly photoconductive nanocomposites of metallophthalocyanines and conjugated polymers. Adv Mater 12:1274

    Article  CAS  Google Scholar 

  17. Kohler A, Dos Santos DA, Belijonne D, Shuai Z, Bredas JL, Holmes AB, Kraus A, Mullen K, Friend RH (1998) Charge separation in localized and delocalized electronic states in polymeric semiconductors. Nature 392:903

    Article  CAS  Google Scholar 

  18. Rud JA, Lovell LS, Senn JW, Qiquan Q, Mcleskey JT (2005) Water soluble polymer/carbon nanotube bulk heterojunction solar cell. J Mater Sci 40:1455–1458

    Article  CAS  Google Scholar 

  19. Xia C, Advincula RC (2001) Decreased aggregation phenomena in polyfluorenes by introducing carbazole copolymer units. Macromolecules 34:5854–5859

    Article  CAS  Google Scholar 

  20. Shachkus A, Krikshtolaitite S, Martinaitis V (1999) Synthesis of [1,3]benzoxazino[2,3-k]-and [2,4]benzodiazepino[3,2-k]-carbazole derivatives. J Mater Sci 35:729–732

    CAS  Google Scholar 

  21. El Malki Z, Bouachrine M, Hamidi M, Bejjit L, Haddad M (2012) Theoretical studies on the structural, electronic and optical properties of the new π-cojugated copolymers based on carbazole and theophene. J Sci Res 4:119–139

    Google Scholar 

  22. Niu YH, Huang J, Cao Y (2003) High-Efficiency polymer light-emitting diodes with stable saturated red emission: use of carbazole-based copolymer blends in a poly(p-phenylenevinylene) derivative. Adv Mater 15:807–811

    Article  CAS  Google Scholar 

  23. Mikroyannidis JA (2006) Blue light-emitting poly(p-phenylenevinylene) derivative with oxadiazole and carbazole pendant groups. J Appl Polym Sci 101:3842–3849

    Article  CAS  Google Scholar 

  24. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85

    Article  CAS  Google Scholar 

  25. Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15:1317

    Article  CAS  Google Scholar 

  26. Yang XN, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579

    Article  CAS  PubMed  Google Scholar 

  27. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stuhn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater 15:1193

    Article  CAS  Google Scholar 

  28. Yang C (2010) Donor/spacer/acceptor block copolymer containing poly(2,7-carbazole) and perylenetetracarboxydiimide subunits. Macromol Chem Phys 211:1446–1451

    Article  CAS  Google Scholar 

  29. Yu L, Ling L (2014) Spectral study, stability and protein labelling of two carbazole-benzothiazole derivatives. J Lumin 149:28–34

    Article  CAS  Google Scholar 

  30. Yang C, Song H-S, Liu D-B (2012) Synthesis and properties of blue light electroluminescent conjugated copolymer based on fluorene and carbazole with an alkyl functional group at the 9-position. J Mater Sci 47:3315–3319

    Article  CAS  Google Scholar 

  31. Prasad PN, Orczyk ME, Zieba J (1994) Fast photorefractive effect in PVK:Ca:DEANST polymer composite. J Phys Chem 98:8699

    Article  Google Scholar 

  32. Meerholz K, Volodin B, Sandalphon KB, Peyghambarian N (1994) A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371:497

    Article  CAS  Google Scholar 

  33. Breda JL, Silbey R, Boudreaux DS, Chance RR (1983) Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J Am Chem Soc 105:6555–6559

    Article  Google Scholar 

  34. Lin SL, Chan LH, Lee RH, Yen MY, Kuo WJ, Chen CT, Jeny RJ (2008) Highly efficient carbazole-π-dimesitylborane bipolar fluorophores for nondoped blue organic light-emitting diodes. Adv Mater 20:3947

    Article  CAS  Google Scholar 

  35. Blouin N, Leclerc M (2008) Poly(2,7-carbazole)s: structure−property relationships. Acc Chem Res 41:1110

    Article  CAS  PubMed  Google Scholar 

  36. Kijima Y, Asai N, Tamura S (1999) A blue organic light emitting diode. J Appl Phys 38:5274

    Article  CAS  Google Scholar 

  37. Saitoh A, Yamada N, Yashime M, Okinaka K, Senoo A, Ueno K, Tanaka D, Yaghiro R (2004) Novel fluorene-based blue emitters for high performance OLEDs. SID 2004. Tech Dig 35:150

    Article  CAS  Google Scholar 

  38. Lee MT, Liao CH, Tsai CH, Chen CH (2005) Highly efficient, deep-blue doped organic light-emitting devices. Adv Mater 17:2493

    Article  CAS  Google Scholar 

  39. Chen YH, Lin SL, Chang YC, Chen YC, Lin JT, Lee RH, Kuo WJ, Jeng RJ (2012) Efficient non-doped blue light emitting diodes based on novel carbazole-substituted anthracene derivatives. Org Ele 13:43–52

    Article  CAS  Google Scholar 

  40. Wakim S, Aich BR, Tao Y, Leclerc M (2008) Charge transport, photovoltaic, and thermoelectric properties of poly(2,7-carbazole) and poly(indolo[3,2-b]carbazole) derivatives. Pholym Rev 48:432–462

    Article  CAS  Google Scholar 

  41. Zhou E, Yamakawa S, Zhang Y, Tajima K, Yang C, Hasimoto KJ (2009) Indolo[3,2-b]carbazole-based alternating donor–acceptor copolymers: synthesis, properties and photovoltaic application. Mater Chem 19:7730–7737

    Article  CAS  Google Scholar 

  42. Simokaitiene J, Stanislovaityte E, Grazulevicius JV, Jankauskas V, Gu R, Dehaen W, Hung YC, Hsu CP (2012) Synthesis and properties of methoxyphenyl-substituted derivatives of indolo[3,2-b]carbazole. J Org Chem 77:4924–4931

    Article  CAS  PubMed  Google Scholar 

  43. Gale PA (2008) Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: applications in anion complexation and sensing. Chem Commun 38:4525–4540

    Article  CAS  Google Scholar 

  44. Liu L, Wang X, Wang Y, Peng X, Mo Y (2009) Theoretical investigations on the carbazole-based conjugated polymers containing electron-donating divinylaryl. J Polymer Sci Part B Polym Phys 47:706–714

    Article  CAS  Google Scholar 

  45. Ambrose JG, Nelson JF (1968) Anodic oxidation pathways of carbazoles I, carbazole and N-substituted derivatives. J Electrochem Soc 115:1159

    Article  CAS  Google Scholar 

  46. Zotti G, Schiavon G, Zecchin S, Morin JF, Leclerc M (2002) Electrochemical, conductive, and magnetic properties of 2,7-carbazole-based conjugated polymers. Macromolecules 35:2122

    Article  CAS  Google Scholar 

  47. Bouchard J, Wakim S, Leclerc M (2004) Synthesis of diindolocarbazoles by cadogan reaction: route to ladder oligo(p-aniline)s. J Org Chem 69:5705–5711

    Article  CAS  PubMed  Google Scholar 

  48. Wakim S, Bouchard J, Blouin N, Michaud A, Leclerc M (2004) Synthesis of diindolocarbazoles by ullmann reaction: a rapid route to ladder oligo(p-aniline)s. Org Lett 6:3413–3416

    Article  CAS  PubMed  Google Scholar 

  49. Campbell RB, Trotter J, Robertson JM (1961) The crystal and molecular structure of pentacene. Acta Crystallogr 14:705

    Article  CAS  Google Scholar 

  50. Klauk K, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W (2002) High-mobility polymer gate dielectric pentacene thin film transistors. J Appl Phys 92:5259

    Article  CAS  Google Scholar 

  51. Zhang Q, Ren Y, Ma C, Zhang D-J, Li D-T, Tao X-T, Jiang M-H (2009) Synthesis and structures of two novel indolo[3,2-b] carbazole derivatives. Struct Chem 20:807–813

    Article  CAS  Google Scholar 

  52. Hasnaoui K, Makayssi A, Hamidi M, Bouachrine M (2008) Computational study on geometric and electronic properties of 3.6-carbazole based conjugated polymers. J Iran Chem Res 1:67–77

    Google Scholar 

  53. Boudreault PT, Beaupre S, Leclerc M (2010) Polycarbazoles for plastic electronics. Polym Chem 1:127–136

    Article  CAS  Google Scholar 

  54. Al-Ibrahim M, Ambacher O, Sensfuss S, Gobsch G (2005) Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiphene):fullerene. Appl Phys Lett 86:201120

    Article  CAS  Google Scholar 

  55. Tomasi J, Mennuci B, Cances E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (THEOCHEM) 464:211

    Article  CAS  Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Ö F, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  57. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454

    Article  CAS  Google Scholar 

  58. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108(11):4439

    Article  CAS  Google Scholar 

  59. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  60. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  61. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  62. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  63. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  64. Burke K (2012) Perspective on density functional theory. J Chem Phys 136:150901

    Article  PubMed  CAS  Google Scholar 

  65. Hay PJ, Wadt WR (1985) Perspective on density functional theory. J Chem Phys 82:270

    Article  CAS  Google Scholar 

  66. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:299

    Article  CAS  Google Scholar 

  67. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284

    Article  CAS  Google Scholar 

  68. Dunning TH, Hay PJ (1976) In: Shaefer HF (ed) Modern theoretical chemistry, vol 3, pp 1–28

    Google Scholar 

  69. Mavros MG, Micha DA, Kilin DS (2011) Optical properties of doped silicon quantum dots with crystalline and amorphous structures. J Phys Chem C 115:19529–19537

    Article  CAS  Google Scholar 

  70. Shankar R, Senthilkumar K, Kolandaivel P (2009) Calculation of ionization potential and chemical hardness: a comparative study of different methods. Int J Quant Chem 109:764–771

    Article  CAS  Google Scholar 

  71. Davidov AS (1976) Quantum mechanics. Pergamon, New York

    Google Scholar 

  72. Proshchenko V, Dahnovsky Y (2014) Spectroscopic and electronic structure properties of CdSe nanocrystals: spheres and cubes. Phys Chem Chem Phys 16:7555–7561

    Article  CAS  PubMed  Google Scholar 

  73. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775

    Article  CAS  Google Scholar 

  74. Zhang S, Luo CG, Li HY, Lu C, Li GQ, Lu ZW (2015) First-principle study of silicon cluster doped with rhodium: Rh2Sin (n = 1–11) clusters. Mater Chem Phys 160:227–236

    Article  CAS  Google Scholar 

  75. Shankar R, Kolandaivel P, Senthilkumar L (2012) Coordination and binding properties of zwitterionic glutathione with transition metal cations. Inorg Chim Acta 387:125–136

    Article  CAS  Google Scholar 

  76. Gopalakrishnan S, Kolandaivel P (2016) Optoelectronic properties of passivated and solvated (ZnO)6 nanocluster—a DFT/TD-DFT study. Mater Chem Phys 181:248–258

    Article  CAS  Google Scholar 

  77. Gopalakrishnan S, Kolandaivel P (2017) Electronic, optical and magnetic properties of Co, Fe and Ni doped (ZnX)6; (X=O, S & Se) quantum dots—a DFT study. Comp Theor Chem 1111:56–68

    Article  CAS  Google Scholar 

  78. Ghammamy S, Lashgari A (2013) Structural properties, natural bond orbital, theory functional calculations (DFT) and energies for the 3-methyl-4-(2-phenyl-1,2, 4-triazolo-[1,5-a]pyrimidin-7-yl)furazan compound. Middle-East J Sci Res 17:1080–1086

    Google Scholar 

  79. Gopalakrishnan S, Shankar R, Kolandaivel P (2018) DFT/TD-DFT study on the electronic and spectroscopic properties of hollow cubic and hollow spherical (ZnO)m quantum dots interacting with CO, NO2 and SO3 molecules. Appl Phys A Mater Sci Process 124:280

    Article  CAS  Google Scholar 

  80. Shankar R, Kolandaivel P, Senthilkumar K (2010) Reaction mechanism of cysteine proteases model compound HSH with diketone inhibitor PhCOCOCH3−nXn, (X = F, Cl, n = 0, 1, 2). Int J Quan Chem 110:1660–1674

    CAS  Google Scholar 

  81. Satheeshkumar R, Shankar R, Kaminsky W, Kalaiselvi S, Vijaya Padma V, Rajendra Prasad KJ (2016) Theoretical and experimental investigations on molecular structure of 7-chloro-9-phenyl-2,3-dihydroacridin-4(1H)-one with cytotoxic studies. J Mol Struct 1109:247–257

    Article  CAS  Google Scholar 

  82. Morin JF, Leclerc M (2002) 2,7-Carbazole-based conjugated polymers for blue, green, and red light emission. Macromolecules 35:8413–8417

    Article  CAS  Google Scholar 

  83. Chandni U, Kundu P, Kundu S, Ravishankar N, Ghosh A (2013) Tunability of electronic interactions in ultrathin wires of gold. Adv Mater 25:2486–2491

    Article  CAS  PubMed  Google Scholar 

  84. Saha S, Sarkar S, Pal S, Sarkar P (2013) Ligand mediated tuning of the electronic energy levels of ZnO nanoparticles. RSC Adv 3:532–539

    Article  CAS  Google Scholar 

  85. Zhu J, Yang J, Miao R, Yao Z, Zhuang X, Feng X (2016) Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage. J Mater Chem A 4:2286–2292

    Article  CAS  Google Scholar 

  86. De Oliveira MA, Duarte HA, Pernaut JM, De Almeida WB (2000) Energy gaps of α,α′-substituted oligothiophenes from semiempirical, ab initio, and density functional methods. J Phys Chem A 104:8256–8262

    Article  CAS  Google Scholar 

  87. Fang F, Zhang F (2005) DC electrical conductivity of Au nanoparticle/chloroform and toluene suspensions. J Mater Sci 40:2979–2980

    Article  CAS  Google Scholar 

  88. Boudreault PT, Blouin N, Leclerc M (2008) Poly(2,7-carbazole)s and related polymers. Adv Polym Sci 212:99–124

    Article  CAS  Google Scholar 

  89. Fischer SA, Crotty AM, Kilina SV, Ivanov SA, Tretick S (2012) Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals. Nano Scale 4:904–914

    CAS  Google Scholar 

  90. Azpiroz JM, Matxain JM, Infante I, Lopez X, Ugalde JM (2013) A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys Chem Chem Phys 15:10996–11005

    Article  CAS  PubMed  Google Scholar 

  91. Kraft A, Grimsdale AC, Holmes AB (1998) Electroluminescent conjugated polymers—seeing polymers in a new light. Angew Chem Int Ed 37:402–428

    Article  Google Scholar 

  92. Mitschke U, Bauerle P (2000) The electroluminescence of organic materials. J Mater Chem 10:1471

    Article  CAS  Google Scholar 

  93. Bernius MT, Inbasekaran M, Brien JO, Wu W (2000) Progress with light-emitting polymers. Adv Mater 12:1737

    Article  CAS  Google Scholar 

  94. Leclerc M (2001) Polyfluorenes: twenty years of progress. J Polym Sci Polym Chem 39:2867

    Article  CAS  Google Scholar 

  95. Teyssèdre G, Tardieu G, Laurent C (2002) Characterisation of crosslinked polyethylene materials by luminescence techniques. J Mater Sci 37:1599–1609

    Article  Google Scholar 

  96. Hosokawa C, Higashi H, Nakamura H, Kusumoto T (1995) Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant. Appl Phys Lett 67:3853

    Article  CAS  Google Scholar 

  97. Ding M, Chen D, Wan Z, Zhou Y, Zhong J, Xi J, Ji Z (2015) Hydrothermal synthesis of novel K2YbF5:Er3+/Y3+ microcrystals with tunable red–green upconversion luminescence. J Mater Sci 50:6779–6785

    Article  CAS  Google Scholar 

  98. Chao CI, Chen SA (1998) White light emission from exciplex in a bilayer device with two blue light-emitting polymers. Appl Phys Lett 73:426

    Article  CAS  Google Scholar 

  99. Zhao X-S, Ge Y-R, Zhao X (1998) Carrier-induced dynamic strain effects in semiconductor nanocrystals. J Mater Sci 33:4267–4285

    Article  CAS  Google Scholar 

  100. Du P, Yu JS (2016) Synthesis and luminescent properties of red-emitting Eu3+-activated Ca0.5Sr0.5MoO4 phosphors. J Mater Sci 51:5427–5435

    Article  CAS  Google Scholar 

  101. Badaeva E, May JW, Ma J, Gameline DR, Li X (2011) Characterization of excited-state magnetic exchange in Mn2+-doped ZnO quantum dots using time-dependent density functional theory. J Phys Chem C 115:20986–20991

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the HPCF Centre (High Performance Computing Facility) of DST, Government of India, Hyderabad, for allowing us to use the facility, where most of the calculations have been performed. The authors would like to acknowledge Prof. P. Kolandaivel, Periyar University, Salem, India, for providing the computational facilities. The author S. Gopalakrishnan thanks the UGC, New Delhi, for the award of BSR fellowship (F. No. 7-307/2010 (BSR), dated 02.01.2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shankar.

Ethics declarations

Conflicts of interest

The author confirms that there is no conflict of interest with any other party regarding the material discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, S., Vijayakumar, S. & Shankar, R. DFT/TD-DFT study on halogen doping and solvent contributions to the structural and optoelectronic properties of poly[3,6-carbazole] and poly[indolo(3,2-b)-carbazole]. Struct Chem 29, 1775–1796 (2018). https://doi.org/10.1007/s11224-018-1156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1156-7

Keywords

Navigation