Skip to main content
Log in

Computational investigation of the formation and isomerization pathways of CH3SNO2 and the S–N bond dissociation energies of CH3S(O) n NO2 (n = 0, 1, 2) species

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio and density functional theory (DFT) calculations are employed to investigate the formation and isomerization pathways of methyl thionitrate, CH3SNO2, and the S–N bond dissociation energies (BDE) of the sulfonated methyl thionitrates of the type CH3S(O) n NO2 (n = 0, 1, 2). The calculations indicate that CH3SNO2 may be formed as a stabilized by-product in the reaction CH3S + NO2 which mainly leads to CH3SO + NO. In general, the compounds of the type CH3S(O) n NO2 (n = 0, 1, 2) may be formed as bound intermediates in the homologous reactions CH3S(O) n  + NO2. The calculated S–N BDE exhibit an interesting dependence on the number of the sulfonic oxygen atoms present in each species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arsene C, Barnes I, Becker KH (1999) Phys Chem Chem Phys 1:5463

    Article  CAS  Google Scholar 

  2. Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere. Academic, New York

    Google Scholar 

  3. Arsene C, Barnes I, Becker KH, Mocanu R (2001) Atmos Environ 35:3769

    Article  CAS  Google Scholar 

  4. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Atmos Chem Phys 4:1461

    Article  CAS  Google Scholar 

  5. Barnes I, Hjorth J, Mihalopoulos N (2006) Chem Rev 106:940

    Article  CAS  Google Scholar 

  6. Butkovskaya NI, LeBras G (1994) J Phys Chem 98:2582

    Article  CAS  Google Scholar 

  7. Turnipseed AA, Barone SB, Ravishankara AR (1996) J Phys Chem 100:14703

    Article  CAS  Google Scholar 

  8. Urbanski SP, Stickel RE, Zhao Z, Wine PH (1997) J Chem Soc Faraday Trans 93:2813

    Article  CAS  Google Scholar 

  9. Barnes I, Bastian V, Becker KH, Niki H (1987) Chem Phys Lett 140:451

    Article  CAS  Google Scholar 

  10. Jensen NR, Hjorth J, Lohse C, Scov H, Restelli G (1992) J Atmos Chem 14:95

    Article  CAS  Google Scholar 

  11. Turnipseed AA, Barone SB, Ravishankara AR (1993) J Phys Chem 97:5926

    Article  CAS  Google Scholar 

  12. Martinez E, Albaladejo J, Jimenez E, Notario A, Aranda A (1999) Chem Phys Lett 308:37

    Article  CAS  Google Scholar 

  13. Chang P-F, Wang TT, Wang NS, Hwang Y-L, Lee Y-P (2000) J Phys Chem A 104:5525 (references therein)

    Article  CAS  Google Scholar 

  14. Stamler JS, Singel DJ, Loscalzo J (1992) Science 258:1898

    Article  CAS  Google Scholar 

  15. Lipton SA, Choi YB, Pan ZH, Lei SZZ, Chen HSV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) Nature 364:895

    Google Scholar 

  16. Cameron DR, Borrajo AMP, Bennett BM, Thatcher GRJ (1995) Can J Chem 73:1627

    Article  CAS  Google Scholar 

  17. Parker JD, Gori T (2001) Circulation 104:2263

    CAS  Google Scholar 

  18. Thacher GRJ, Nicolescu AC, Bennet BM, Toader V (2004) Free Radic Biol Med 37:1122

    Article  Google Scholar 

  19. Clarke JL, Kastrati I, Johnston LJ, Thatcher GRJ (2006) Can J Chem 84:709

    Article  CAS  Google Scholar 

  20. Tang YZ, Sun H, Pan YR, Pan XM, Wang RS (2006) Int J Quan Chem 107:1495

    Article  Google Scholar 

  21. Gonzales C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda KR, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Straroverov VN, Kobayashi R, Normand J, Raghavashari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo VC, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Inc. Gaussian, Wallingford

    Google Scholar 

  23. McKee ML (1994) Chem Phys Lett 231:257

    Article  CAS  Google Scholar 

  24. Lacombe S, Loudet M, Cardy H, Dargelos A (1999) Chem Phys 244:175

    Article  CAS  Google Scholar 

  25. Resende SM, De Almeida WB (1999) Phys Chem Chem Phys 1:2953

    Article  CAS  Google Scholar 

  26. Zhu L, Bozzelli JS (2006) J Phys Chem A 110:6923

    Article  CAS  Google Scholar 

  27. Kukui A, Bossoutrot V, Laverdet G, Le Bras G (2000) J Phys Chem A 104:935

    Article  CAS  Google Scholar 

  28. Lesar A (2012) Int J Quant Chem 112:1904

    Article  CAS  Google Scholar 

  29. Borissenko D, Kukui A, Laverdet G, Le Bras G (2003) J Phys Chem A 107:1155

    Article  CAS  Google Scholar 

  30. Ray A, Vassalli I, Laverdet G, Le Bras G (1996) J Phys Chem 100:8895

    Article  CAS  Google Scholar 

  31. Patroescu IV, Barnes I, Becker KH, Mihalopoulos N (1999) Atmos Environ 33:25

    Article  CAS  Google Scholar 

  32. Salta Z, Kosmas AM (2014) Int J Quant Chem 114:1430

    Article  CAS  Google Scholar 

  33. Atak K, Engel N, Lange KM, Golnak R, Gotz M, Soldatov M, Rubersson JE, Kosug N, Aziz EF (2012) Chem Phys Chem 13:3106

    CAS  Google Scholar 

  34. Lindquist BA, Takeshita TY, Woon DE, Dunning TH Jr (2013) J Chem Theory Comput 9:4444

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. Computer services provided by the Center of Molecular Simulations of the University of Ioannina are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnie M. Kosmas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salta, Z., Kosmas, A.M. Computational investigation of the formation and isomerization pathways of CH3SNO2 and the S–N bond dissociation energies of CH3S(O) n NO2 (n = 0, 1, 2) species. Struct Chem 27, 1149–1156 (2016). https://doi.org/10.1007/s11224-015-0737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0737-y

Keywords

Navigation