Skip to main content
Log in

Hirshfeld surface analysis and spectroscopic and DFT studies of p-acetotoluidide and p-thioacetotoluidide

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The Hirshfeld surface analysis, theoretical calculation, and IR and Raman spectra of p-acetotoluidide and p-thioacetotoluidide were reported. Hirshfeld surfaces and fingerprint plot have been used for visualizing, exploring, and quantifying intermolecular interactions in the crystal lattice of the title compounds. The packing of the molecules in the crystal structure of p-acetotoluidide and p-thioacetotoluidide forms the chains of N–H···O and N–H···S hydrogen bonds, respectively. The close contacts are also dominated by H···H and H···C/C···H interactions. The analysis of Hirshfeld surface has been well correlated with the spectroscopic studies. Theoretical calculations of the title compounds’ isolated molecule have been carried out using DFT at the B3LYP level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ilieva S, Hadjieva B, Galabor B (1999) J Mol Struct 508:73–80

    Article  CAS  Google Scholar 

  2. Kadokura M, Wada T, Seio K, Sekine M (2000) J Org Chem 65:5104–5113

    Article  CAS  Google Scholar 

  3. Inoue Y, Kanbara T, Yamamoto T (2003) Tetrahedron Lett 44:5167–5169

    Article  CAS  Google Scholar 

  4. Koduri ND, Wang Z, Cannell G, Cooley K, Lemma TM, Miao K, Nguyen M, Frohock B, Castaneda M, Scott H, Albinescu D, Hussaini SR (2014) J Org Chem 79:7405–7414

    Article  CAS  Google Scholar 

  5. Ojeda-Porras A, Gamba-Sánchez D (2015) Tetrahedron Lett 56:4308–4311

    Article  CAS  Google Scholar 

  6. Gudmundsson KS, Tidwell J, Lippa N, Koszalka GW, van Draanen N, Ptak RG, Drach JC, Townsend LB (2000) J Med Chem 43:2464–2472

    Article  CAS  Google Scholar 

  7. Craigo WA, Le Sueur BW, Skibo EB (1999) J Med Chem 42:3324–3333

    Article  CAS  Google Scholar 

  8. Rehman M, Imran M, Arif M, Farooq M (2013) WAP J 3:558–564

    Google Scholar 

  9. Ansari KF, Lal C (2009) J Chem Sci 121:1017–1025

    Article  CAS  Google Scholar 

  10. Roth T, Morningstar ML, Boyer PL, Hughes SH, Buckheit RW Jr, Michejda CJ (1997) J Med Chem 40:4199–4207

    Article  CAS  Google Scholar 

  11. Cheng J, Xie J, Luo X (2005) Bioorg Med Chem Lett 15:267–269

    Article  CAS  Google Scholar 

  12. Trivedi R, De SK, Gibbs RA (2006) J Mol Catal A Chem 245:8–11

    Article  CAS  Google Scholar 

  13. White AW, Curtin NJ, Eastman BW, Golding BT, Hostomsky Z, Kyle S, Li J, Maegley KA, Skalitzky DJ, Webber SE, Yu XH, Griffin RJ (2004) Bioorg Med Chem Lett 14:2433–2437

    Article  CAS  Google Scholar 

  14. Townsend LB, Revankav GR (1970) Chem Rev 70:389–438

    Article  CAS  Google Scholar 

  15. Shingare MS, Mane DV, Shinde DB, Thore SN, Bhawsar SB (1996) Asian J Chem 8:225–228

    CAS  Google Scholar 

  16. Shukla A (2012) IJPSR 3:922–927

    CAS  Google Scholar 

  17. Al-Ebaisat HS (2011) J Appl Sci Environ Manag 15:451–454

    CAS  Google Scholar 

  18. Hoebrecker F (1872) Ber 5:920–924

    Article  Google Scholar 

  19. Śmiszek-Lindert W, Nowak M, Kusz J (2007) Acta Crystallogr Sect E 63:o3917–o3917

    Article  Google Scholar 

  20. Schoffstall AM, Gaddis BA, Druelinger ML (2004) Microscale and miniscale organic chemistry laboratory experiments. Mc Graw-Hill Higher Education, New York

    Google Scholar 

  21. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc, Wallingford CT

  22. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  24. Wolff SK, Grimwood DJ, McKinnon JJ, Jayatilaka D, Spackamn MA (2007) Crystal explorer 3.0. University of Western Australia, Perth

    Google Scholar 

  25. Spackman MA, Jayatilaka D (2009) Cryst Eng Commun 11:19–32

    Article  CAS  Google Scholar 

  26. McKinnon JJ, Mitchell AS, Spackman MA (1998) Chem Eur J 4:2136–2141

    Article  CAS  Google Scholar 

  27. Rudnick J, Gaspari G (1986) J Phys A Math Gen Phys 19:L191–L193

    Article  Google Scholar 

  28. Meyer AY (1986) Chem Soc Rev 15:449–474

    Article  CAS  Google Scholar 

  29. Haisa M, Kashino S, Matsuzaki Y, Kawai R, Kunitomi K (1977) Acta Crystallogr Sect B 33:2449–2454

    Article  Google Scholar 

  30. Errington W, Parmar VS (2004) Private Communication (CCDC refcode ACTOLD05)

  31. Seth SK, Ch Maity G, Kar T (2011) J Mol Struct 1000:120–126

    Article  CAS  Google Scholar 

  32. Bondi A (1964) J Phys Chem 68:441–447

    Article  CAS  Google Scholar 

  33. Flakus HT, Śmiszek-Lindert W, Stadnicka K (2007) Chem Phys 335:221–232

    Article  CAS  Google Scholar 

  34. Hesse M, Meier H, Zeeh B (2007) Spectroscopic methods in organic chemistry. Thieme, Stuttgart, New York, p 72

    Google Scholar 

  35. Flakus HT, Śmiszek-Lindert W, Hachuła B, Michta A (2012) Spectrochim Acta Mol Biomol 97:263–273

    Article  CAS  Google Scholar 

  36. Flakus HT, Śmiszek-Lindert W, Hachuła B (2011) J Phys Chem A 115:7511–7520

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was founded by the grant of the Institute of Mechanized Construction and Rock Mining (No. 19-71/415-01/2014). All of the calculations were performed with the aid of hardware and software at the Wrocław Centre for Networking and Supercomputing WCSS, Wrocław, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wioleta Śmiszek-Lindert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Śmiszek-Lindert, W., Chełmecka, E. & Dudzińska, A. Hirshfeld surface analysis and spectroscopic and DFT studies of p-acetotoluidide and p-thioacetotoluidide. Struct Chem 27, 1093–1106 (2016). https://doi.org/10.1007/s11224-015-0731-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0731-4

Keywords

Navigation