Skip to main content
Log in

COMPUTATIONAL INVESTIGATIONS, HIRSHFELD SURFACE ANALYSIS, INTERACTION ENERGY CALCULATIONS, AND ENERGY FRAMEWORK CRYSTAL STRUCTURE OF METHYL 2-AMINO-5-HYDROXYBENZOATE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The title compound with the molecular formula C8H9NO3 is synthesized by refluxing 2-amino-5-hydroxybenzoic acid in methanol. The molecular structure of the compound is determined by single crystal X-ray diffraction. Methyl 2-amino-5-hydroxybenzoate crystallizes in the orthorhombic space group P212121 with a = 4.973(2) Å, b = 10.923(5) Å, c = 14.074(6) Å, Z = 4 and V = 764.4(6) Å3. DFT is used to compute HOMO–LUMO energy levels, to predict the reactivity of substituents (NH2 and OH), and to determine the nucleophilic character of these two groups. The orientation and nature of substituents on benzene favors the formation of a stable six-membered ring via hydrogen bonding which plays a key role in the properties of the investigated compound. The natural bond orbital (NBO) population analysis demonstrates that the hyperconjugative effect between the donor lone pairs located on the carbonyl oxygen atom and the N–H group, via the lp O → σ*(N–H) 1,6-remote interaction, is responsible for the preferred conformation. The molecular electrostatic potential (MEP) surface shows the electrical neutrality in the molecule. To get an insight to the intermolecular interactions in the crystal a Hirshfeld surface analysis is also carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. S. Ferrere, A. Zaban, and B. A. Gregg. J. Phys. Chem. B, 1997, 101, 4490-4493. https://doi.org/10.1021/jp970683d

    Article  CAS  Google Scholar 

  2. A. W. H. Lam, W. T. Wong, S. Gao, G. Wen, and X. X. Zhang. Eur. J. Inorg. Chem., 2003, 2003, 149-163. https://doi.org/10.1002/ejic.200390021

    Article  Google Scholar 

  3. A. Young and T. R. Sweet. J. Am. Chem. Soc., 1958, 80, 800-803. https://doi.org/10.1021/ja01537a013

    Article  CAS  Google Scholar 

  4. Z. Aibibuli, Y. Wang, H. Tu, X. Huang, and A. Zhang. Molecules, 2012, 17, 3181-3201. https://doi.org/10.3390/molecules17033181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. L. Z. Wei, J. S. Cho, and S. Y. Lee. Proc. Natl. Acad. Sci., 2019, 116, 10749-10756. https://doi.org/10.1073/pnas.1903875116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C. S. McKay and M. G. Finn. Angew. Chem., 2016, 128, 12833-12839. https://doi.org/10.1002/ange.201602797

    Article  Google Scholar 

  7. W. P. Appel, M. M. Nieuwenhuizen, M. Lutz, B. F. De Waal, A. R. Palmans, and E.W. Meijer. Chem. Sci., 2014, 5, 3735-3745. https://doi.org/10.1039/C4SC00871E

    Article  CAS  Google Scholar 

  8. S. Hinsberger, K. Hüsecken, M. Groh, M. Negri, J. Haupenthal, and R. W. Hartmann. J. Med. Chem., 2013, 56, 8332-8338. https://doi.org/10.1021/jm400485e

    Article  CAS  PubMed  Google Scholar 

  9. B. Lippa, G. S. Kauffman, J. Arcari, T. Kwan, J. Chen, W. Hungerford, and S. Steyn. Bioorg. Med. Chem. Lett., 2007, 17, 3081-3086. https://doi.org/10.1016/j.bmcl.2007.03.046

    Article  CAS  Google Scholar 

  10. A. Kamal, N. Shankaraiah, K. L. Reddy, and V. Devaiah. Tetrahedron Lett., 2006, 47, 4253-4257. https://doi.org/10.1016/j.tetlet.2006.04.025

    Article  CAS  Google Scholar 

  11. A. Witt and J. Bergman. J. Org. Chem., 2001, 66, 2784-2788. https://doi.org/10.1021/jo001696h

    Article  CAS  PubMed  Google Scholar 

  12. Z. W. Luo, J. S. Cho, and S. Y. Lee. Proc. Natl. Acad. Sci., 2019, 116, 10749-10756. https://doi.org/10.1073/pnas.1903875116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bruker SMART and SAINT. Madison, Wisconsin, USA: Bruker AXS Inc., 2002.

  14. G. M. Sheldrick. SADABS. Göttingen, Germany: University of Göttingen, 2004.

  15. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64, 112-122. https://doi.org/10.1107/S0108767307043930

    Article  Google Scholar 

  16. L. J. Farrugia. J. Appl. Crystallogr., 2012, 45, 849-854. https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  17. F. L. Hirshfeld. Theor. Chim. Acta, 1977, 44, 129-138. https://doi.org/10.1007/BF00549096

    Article  CAS  Google Scholar 

  18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision C.1. Wallingford, CT: Gaussian Inc., 2009.

  19. J. D. Chai and M. Head-Gordon. J. Chem. Phys., 2008, 128, 084106. https://doi.org/10.1063/1.2834918

    Article  CAS  PubMed  Google Scholar 

  20. M. E. Hachim, K. Sadik, S. Byadi, and A. Aboulmouhajir. J. Mol. Model., 2020, 26, 1-16. https://doi.org/10.1007/s00894-020-04430-4

    Article  CAS  PubMed  Google Scholar 

  21. A. E. Reed, L. A. Curtiss, and F. Weinhold. Chem. Rev., 1988, 88, 899-926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  23. I. Alkorta and J. Elguero. Int. J. Mol. Sci., 2003, 4, 64-92. https://doi.org/10.3390/i4030064

    Article  CAS  Google Scholar 

  24. C. G. Zhan, J. A. Nichols, and D. A. Dixon. J. Phys. Chem. A, 2003, 107, 4184-4195. https://doi.org/10.1021/jp0225774

    Article  CAS  Google Scholar 

  25. I. V. Alabugin, M. Manoharan, S. Peabody, and F. Weinhold. J. Am. Chem. Soc., 2003, 125, 5973-5987. https://doi.org/10.1021/ja034656e

    Article  CAS  PubMed  Google Scholar 

  26. L. Aguilar-Castro, M. Tlahuextl, L. H. Mendoza-Huizar, A. R. Tapia-Benavides, and H. Tlahuext. ARKIVOC, 2008, 210-226. https://doi.org/10.3998/ark.5550190.0009.517

    Article  Google Scholar 

  27. A. Saeed, A. Khurshid, J. P. Jasinski, C. G. Pozzi, A. C. Fantoni, and M. F. Erben. Chem. Phys., 2014, 431, 39-46. https://doi.org/10.1016/j.chemphys.2014.01.009

    Article  CAS  Google Scholar 

  28. J. E. Del Bene, S. A. Perera, and R. J. Bartlett. J. Am. Chem. Soc., 2000, 122, 3560/3561. https://doi.org/10.1021/ja994312h

    Article  CAS  Google Scholar 

  29. E. Scrocco and J. Tomasi. Adv. Quantum Chem., 1978, 11, 115-193. https://doi.org/10.1016/S0065-3276(08)60236-1

    Article  Google Scholar 

  30. M. A. Spackman and D. Jayatilaka. CrystEngComm, 2009, 11, 19-32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  31. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer17. The University of Western Australia, 2017.

  32. P. Venkatesan, S. Thamotharan, A. Ilangovan, H. Liang, and T. Sundius. Spectrochim. Acta, Part A, 2016, 153, 625-636. https://doi.org/10.1016/j.saa.2015.09.002

    Article  CAS  Google Scholar 

  33. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Chem. Commun., 2007, 37, 3814-3816. https://doi.org/10.1039/b704980c

    Article  Google Scholar 

  34. V. R. Hartwar, M. Sist, M. R. V. Jorgensen, A. H. Mamakhel, X. Wang, C. M. Hoffmann, K. Sugimoto, J. Overgaard, and B. B. Iversen. IUCrJ, 2015, 2, 563-574. https://doi.org/10.1107/S2052252515012130

    Article  CAS  Google Scholar 

  35. M. J. Turner, S. Grabowsky, D. Jayatilaka, and M. A. Spackman. J. Phys. Chem. Lett., 2014, 5, 4249-4255. https://doi.org/10.1021/jz502271c

    Article  CAS  PubMed  Google Scholar 

  36. M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka, and M. A. Spackman. Chem. Commun., 2015, 51, 3735-3738. https://doi.org/10.1039/C4CC09074H

    Article  CAS  Google Scholar 

  37. C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. IUCrJ, 2017, 4, 575-587. https://doi.org/10.1107/S205225251700848X

    Article  CAS  Google Scholar 

  38. A. D. Becke. J. Chem. Phys., 1993, 98, 1372-1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  39. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1998, 37, 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  40. A. Abbas, H. Gökce, and S. Bahçeli. Spectrochim. Acta, Part A, 2016, 152, 596-607. https://doi.org/10.1016/j.saa.2015.01.099

    Article  CAS  Google Scholar 

  41. G. Yuan, K. Z. Shao, D. Y. Du, X. L. Wang, Z. M. Su, and J. F. Ma. CrystEngComm, 2012, 14, 1865-1873. https://doi.org/10.1039/c1ce06178j

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Shabir.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 11, pp. 1857-1869.https://doi.org/10.26902/JSC_id83819

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, A., Shabir, G., Channar, P.A. et al. COMPUTATIONAL INVESTIGATIONS, HIRSHFELD SURFACE ANALYSIS, INTERACTION ENERGY CALCULATIONS, AND ENERGY FRAMEWORK CRYSTAL STRUCTURE OF METHYL 2-AMINO-5-HYDROXYBENZOATE. J Struct Chem 62, 1745–1758 (2021). https://doi.org/10.1134/S0022476621110111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621110111

Keywords

Navigation