Skip to main content
Log in

Perspectives on the crystal densities and packing coefficients of explosive compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We have investigated possible relationships between four crystal properties: experimental densities and computed intrinsic molecular volumes, packing coefficients and amounts of free space per molecule in the crystal lattices. Our focus was upon C-, H-, N-, O-containing explosive compounds. The objectives were to gain some insight into how densities might be increased, to improve detonation performance, and the amounts of free space per molecule decreased, to counter one of the factors promoting undesired sensitivity to accidental stimuli. The issue of molecular planarity was also examined. The best correlation found between the four properties is perhaps a surprising one: The free space per molecule increases as the molecules are bigger. On the other hand, some relationships that seem to be intuitively reasonable turn out to be quite weak. The principal positive conclusions are that it is desirable for explosive compounds to be composed of molecules that are small and preferably planar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dlott DD (2003) In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combustion, ch 6. Elsevier, Amsterdam, pp 125–191

    Chapter  Google Scholar 

  2. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  3. Meyer R, Köhler J, Homburg A (2007) Explosives, 6th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Shackelford SA (2008) Cent Eur J Energ Mater 5(1):75–101

    CAS  Google Scholar 

  5. Klapötke TM (2012) Chemistry of high energy materials, 2nd edn. de Gruyter, Berlin

    Book  Google Scholar 

  6. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  7. Urbánski T (1984) Chemistry and technology of explosives, vol 4. Pergamon Press, Oxford

    Google Scholar 

  8. Gibbs TR, Popolato A (eds) (1980) LASL explosive property data. University of California Press, Berkeley

    Google Scholar 

  9. Mader CL (1998) Numerical modeling of explosives and propellants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  10. Politzer P, Murray JS (2014) Cent Eur J Energ Mater 11:459–474

    Google Scholar 

  11. Mader CL (1996) In: Marinkas PL (ed) Organic Energetic Compounds. Nova, Commack, p 193

    Google Scholar 

  12. Politzer P, Murray JS (2011) Cent Eur J Energ Mater 8:209–220

    CAS  Google Scholar 

  13. Eckhardt CJ, Gavezzotti A (2007) J Phys Chem B 111:3430–3437

    Article  CAS  Google Scholar 

  14. Rice BM, Byrd EFC (2013) J Comput Chem 34:2146–2151

    Article  CAS  Google Scholar 

  15. Gavezzotti A (1990) J Phys Chem 94:4319–4325

    Article  CAS  Google Scholar 

  16. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  17. Politzer P, Lane P, Murray JS (2011) Cent Eur J Energ Mater 8:39–52

    CAS  Google Scholar 

  18. Licht H-H (2000) Propellant Explos Pyrotech 25:126–132

    Article  CAS  Google Scholar 

  19. Džingalešević V, Antić G, Mlađenović D (2004) Sci Tech Rev 54:72

    Google Scholar 

  20. Politzer P, Murray JS (2015) J Mol Model 21:262(1–11)

  21. Tsai DH, Armstrong RW (1994) J Phys Chem 98:10997–11000

    Article  CAS  Google Scholar 

  22. Tarver CM, Chidester SK, Nichols AL III (1996) J Phys Chem 100:5794–5799

    Article  CAS  Google Scholar 

  23. Tarver CM, Urtiew PA, Tran TD (2005) J Energ Mater 23:183–203

    Article  CAS  Google Scholar 

  24. Politzer P, Murray JS (2014) Adv Quantum Chem 69:1–30

    Article  CAS  Google Scholar 

  25. Politzer P, Murray JS (2015) J Mol Model 21:25(1–11)

  26. Politzer P, Murray JS (2014) J Mol Model 20:2223(1–8)

  27. Kitaigorodski AI (1961) Organic chemical crystallography. Consultants Bureau, New York

    Google Scholar 

  28. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  29. Stine JR (1990) J Energ Mater 8:41–73

    Article  CAS  Google Scholar 

  30. Dunitz JD, Filippini G, Gavezzotti A (2000) Tetrahedron 56:6595–6601

    Article  CAS  Google Scholar 

  31. Ammon HL (2001) Struct Chem 12:205–212

    Article  CAS  Google Scholar 

  32. Politzer P, Murray JS (1998) J Mol Struct (Theochem) 425:107–114

    Article  Google Scholar 

  33. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  34. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  35. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) J Mol Model 17:2569–2574

    Article  Google Scholar 

  36. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Propellant Explos Pyrotech 22:249–255

    Article  CAS  Google Scholar 

  37. Gilardi RD, Butcher RJ (2001) Acta Cryst E 57:657–658

    Article  Google Scholar 

  38. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  39. Li J-R, Zhao J-M, Dong H-S (2005) J Chem Cryst 35:943–948

    Article  CAS  Google Scholar 

  40. Lai W-P, Lian P, Yu T, Bu J-H, Liu Y-Z, Zhu W-L, Lv J, Ge Z-X (2014) J Mol Model 20:2343(1–10)

  41. Archibald TG, Gilardi R, Baum K, George C (1990) J Org Chem 55:2920–2924

    Article  CAS  Google Scholar 

  42. Dunitz JD, Gavezzotti A (1999) Acc Chem Res 32:677–684

    Article  CAS  Google Scholar 

  43. Wei T, Zhu W, Zhang X, Li Y-F, Xiao H (2009) J Phys Chem A 113:9404–9412

    Article  CAS  Google Scholar 

  44. Wilson WS, Bliss DF, Christian SL, Knight DJ (1990) Explosive properties of polynitroaromatics. Report no. NWC TP 7073, Naval Weapons Center, China Lake, CA

Download references

Acknowledgments

Oleg Shishkin remains in our memories as a good friend and a fine scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. Perspectives on the crystal densities and packing coefficients of explosive compounds. Struct Chem 27, 401–408 (2016). https://doi.org/10.1007/s11224-015-0702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0702-9

Keywords

Navigation