Skip to main content
Log in

Synthesis, molecular structure and optical properties of glycidyl derivatives of quercetin

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of glycidyl ethers of quercetin and studies of their structure and spectral properties have been carried out. Using FTIR spectroscopy, 1H and HSQC NMR spectroscopy, mass spectrometry and quantum chemical simulations, it was shown that glycidation of 7-hydroxy and 4′-hydroxy groups primarily takes place, and then, the sequential glycidation of 3′-hydroxy and, further, 3-hydroxy groups occurs. Solvatochromic effects and quadratic polarizability of the obtained ethers—7,4′-diglycidyloxy-3,5,3′-trihydroxyflavone, 7,3′,4′-triglycidyloxy-5,3′-dihydroxyflavone and 3,7,3′,4′-tetraglycidyloxy-5-hydroxyflavone—were studied. It was shown that the diglycidyl and triglycidyl ethers can be used for creation of new polymeric NLO materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu J, Xiao H, Qiu L, Zhen Zh, Liub X, Bo Sh (2014) Comparison of nonlinear optical chromophores containing different conjugated electron-bridges: the relationship between molecular structure properties and macroscopic electro-optic activities of materials. RSC Adv. doi:10.1039/c4ra09368b

    Google Scholar 

  2. Dhanya R, Kishore VC, Sudha Kartha C, Sreekumar K, Rani J (2008) Ground state and excited state dipole moments of alkyl substituted para-nitroaniline derivatives. Spectrochim Acta A 71:1355–1359

    Article  CAS  Google Scholar 

  3. Mallakpour S, Zadehnazari A (2011) Advances in synthetic optically active condensation polymers. Express Polym Lett 5:142–181

    Article  CAS  Google Scholar 

  4. Zadrozna I, Kaczorowska E (2008) Relationship between structure and nonlinear optical properties of new bisazo chromophores. Theoretical and experimental study. Struct Chem 19:131–135

    Article  CAS  Google Scholar 

  5. Luo J, Qin J, Kang H, Ye C (2000) Synthesis and characterization of accordion main-chain azo-dye polymers for second-order optical non-linearity. Polym Int 49:1302–1307

    Article  CAS  Google Scholar 

  6. Monnereau C, Blart E, Illien B, Paris M, Odobel F (2005) Study of the cross-linking mechanism of a copolymer containing an electrooptic chromophore. J Phys Org Chem 18:1050–1058

    Article  CAS  Google Scholar 

  7. Verbiest T, Houbrechts S, Kauranen M, Clays K, Persoons A (1997) Second-order nonlinear optical materials: recent advances in chromophore design. J Mater Chem 7:2175–2189

    Article  CAS  Google Scholar 

  8. Hashimoto H, Nakashima T, Hattori K, Yamada T, Mizoguchi T, Koyama Y, Kobayashi T (1999) Structures and non-linear optical properties of polar carotenoid analogues. Pure Appl Chem 71:2225–2236

    Article  CAS  Google Scholar 

  9. Bouchouit K, Derkowska B, Migalska-Zalas A, Abede S, Benali-cherif N, Sahraou B (2010) Nonlinear optical properties of selected natural pigments extracted from spinach: carotenoids. Dyes Pigments 86:161–165

    Article  CAS  Google Scholar 

  10. El Kouari Y, Migalska-Zalas A, Arof AK, Sahraoui B (2014) Computations of absorption spectra and nonlinear optical properties of molecules based on anthocyanidin structure. Opt Quant Electron. doi:10.1007/s11082-014-9965-4

    Google Scholar 

  11. Roshal AD, Mitina VG, Orlov VD, Ponomarev OA, Sukhorukov AA, Fialkova SV (1997) Interpretation of electron transitions in absorption spectra of phenylchromones and their hydroxy derivatives. Funct Mater 4:121–127

    Google Scholar 

  12. Doroshenko AO (1999) Spectral Data Lab Software. Institute of Chemistry at V.N. Karazin Kharkiv National University, Kharkiv

    Google Scholar 

  13. General methods of test for pigments and extenders. Part 10. Determination of density. Pyknometer method. ISO 787-10:1993

  14. Lee H, Neville K (1967) Handbook of epoxy resins. McGraw-Hill, New York

    Google Scholar 

  15. Labanowski JK (1991) In: Andzelm JW (ed) Density functional methods in chemistry. Springer, New York

    Chapter  Google Scholar 

  16. Zhao Y, Truhlar DG (2006) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  Google Scholar 

  17. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  18. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC et al (2004) Gaussian 09, revision C.02; Gaussian, Inc. Wallingford

  20. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  21. Barone V, Cossi M, Mennucci B, Tomasi JA (1997) New definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  22. Patterson WA (1954) Infrared absorption bands characteristic of the oxirane ring. Anal Chem 26:823–835

    Article  CAS  Google Scholar 

  23. Bomstein J (1958) Infrared spectra of oxirane compounds. Correlations with structure. Anal Chem 30:544–546

    Article  CAS  Google Scholar 

  24. González M, Cabanelas JC, Baselga J (2012) Applications of FTIR on epoxy resins—identification, monitoring the curing process, phase separation and water uptake. In Theophile T (ed) Infrared spectroscopy—materials science, engineering and technology. InTech Europe. doi:10.5772/36323

  25. Hong Y-S, Hong KS, Cho J-H, Volkov VI, Lee C-H (2008) Chemical exchange of hydroxyl protons in quercetin measured by pulsed field gradient NMR. Appl Magn Reson 35:261–270

    Article  CAS  Google Scholar 

  26. Mishina EN, Goloveshkin AC, Bushmarinov IS, Teleshev AT, Mishina VYu, Nifantiev EYe (2012) Structural peculiarities of 3,5,7,3′,4′-pentahydroxyflavone obtained from wood of the larch. Khim Rast Syrja 4:85–90

    Google Scholar 

  27. ACD/CNMR (1994–1996) Advanced chemistry development Inc., Toronto

  28. Mattarei A, Biasutto L, Rastrelli F, Garbisa S, Marotta E, Zoratti M, Paradisi C (2010) Regioselective o-derivatization of quercetin via ester intermediates. An improved synthesis of rhamnetin and development of a new mitochondriotropic derivative. Molecules 15:4722–4736

    Article  CAS  Google Scholar 

  29. Roshal AD, Sakhno TV, Verezubova AA, Ptiagina LM, Musatov VI, Wróblewska A, Błażejowski J (2003) Structure, stability and spectral properties of complexes of flavones with metal ions of group II. Funct Mater 10:419–426

    CAS  Google Scholar 

  30. Mezzetti A, Protti S, Lapouge Ch, Cornard J-P (2011) Protic equilibria as the key factor of quercetin emission in solution. Relevance to biochemical and analytical studies. Phys Chem Chem Phys 13:6858–6864

    Article  CAS  Google Scholar 

  31. Musialik M, Kuzmicz R, Pawłowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74:2699–2709

    Article  CAS  Google Scholar 

  32. Momić T, Savić J, Černigoj U, Trebše P, Vasić V (2007) Protolytic equilibria and photodegradation of quercetin in aqueous solution. Collect Czech Chem Commun 72:1447–1460

    Article  Google Scholar 

  33. Agrawal PK, Schneider H-J (1983) Deprotonation induced 13C NMR shifts in phenols and flavonoids. Tetrahedron Lett 24:177–180

    Article  CAS  Google Scholar 

  34. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  35. Paley MS, Harris JM, Looser H, Baumert JC, Bjorklund GC, Jundt D, Twieg RJ (1989) A solvatochromic method for determining second-order polarizabilities of organic molecules. J Org Chem 54:3774–3778

    Article  CAS  Google Scholar 

  36. Mishurov D, Roshal A, Brovko O (2015) Second-order polarizability and temporal stability of epoxy polymers doped with chromophore and with chromophore moieties in the main chain. Polym Polym Compos 23:121–128

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Professor J. Błażejowski and Professor K. Krzymiński from University of Gdansk for assistance with testing the structures of the glycidyl ethers. The Ukrainian-American Laboratory of Computational Chemistry (UALCC, Kharkiv, Ukraine) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Roshal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishurov, D.A., Voronkin, A.A. & Roshal, A.D. Synthesis, molecular structure and optical properties of glycidyl derivatives of quercetin. Struct Chem 27, 285–294 (2016). https://doi.org/10.1007/s11224-015-0694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0694-5

Keywords

Navigation