Skip to main content
Log in

Intramolecular halogen bonds in 1,2-aryldiyne molecules: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Intramolecular halogen bonds have been the subject of several current experimental and theoretical studies. In this work, intramolecular halogen bonds in a series of 1,2-aryldiyne molecules were investigated using density functional theory calculations at the M06-2x level of theory. For comparison, some dimeric complexes between halogenated aryldiynes and quinolinyl compounds were also considered. The calculated interatomic distances and interaction angles of intramolecular halogen bonds compare fairly well with those determined experimentally, and the triangle motifs retain almost perfectly planar in all the studied molecules. Many of the well-known properties of conventional halogen bonds are reproduced in intramolecular halogen bonds: the interaction strength tends to increase with the enlargement of the atomic radius of halogens (I > Br > Cl); the attachment of electron-withdrawing moieties to halogens leads to much stronger intramolecular halogen bonds; the X···N (quinolinyl) interactions are stronger than the X···O (carbonyl) halogen bonds. On the basis of the shorter interatomic distances and the larger values of electron densities at the bond critical points, intramolecular halogen bonds become stronger in strength than corresponding intermolecular halogen bonds. However, these interactions have similar structural, energetic, atoms in molecules (AIM), and noncovalent interaction index (NCI) characteristics to traditional halogen bonds. Therefore, these interactions can be recognized as halogen bonds that are primarily electrostatic in nature. Particularly, the formation of intramolecular halogen bonds gives rise to the essential coplanarity of the molecules, whereas the two subunits in the dimeric complexes deviate from planarity to a large degree. In addition, a small number of crystal structures containing intramolecular halogen bonds were retrieved from the Cambridge Structural Database (CSD), to provide more insights into these interactions in crystals. This work not only will extend the knowledge of noncovalent interactions involving halogens as electrophilic centers but also could be very useful in molecular design and synthetic chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jeffrey G (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  2. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  3. Desiraju G, Steiner T (1999) The weak hydrogen bond, in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  4. Steiner T (2002) Angew Chem Int Ed Engl 41:49

    Google Scholar 

  5. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) Acc Chem Res 46:2686

    Article  CAS  Google Scholar 

  6. Meyer F, Dubois P (2013) CrystEngComm 15:3058

    Article  CAS  Google Scholar 

  7. Aakeroy CB, Baldrighi M, Desper J, Metrangolo P, Resnati G (2013) Chem Eur J 19:16240

    Article  Google Scholar 

  8. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386

    Article  CAS  Google Scholar 

  9. Sun A, Lauher JW, Goroff NS (2006) Science 312:1030

    Article  CAS  Google Scholar 

  10. Rissanen K (2008) CrystEngComm 10:1107

    Article  CAS  Google Scholar 

  11. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114

    Article  CAS  Google Scholar 

  12. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789

    Article  CAS  Google Scholar 

  13. Bauzaa A, Alkorta I, Frontera A, Elguero J (2013) J Chem Theory Comput 9:5201

    Article  Google Scholar 

  14. Murray JS, Politzer P (2011) WRIES Comput Mol Sci 1:153

    Article  CAS  Google Scholar 

  15. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

    Article  CAS  Google Scholar 

  16. Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598

    Article  CAS  Google Scholar 

  17. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2

    Article  CAS  Google Scholar 

  18. Politzer P, Murray JS (2013) ChemPhysChem 14:278

    Article  CAS  Google Scholar 

  19. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178

    Article  CAS  Google Scholar 

  20. Politzer P, Murray JS, Clark T (2015) J Mol Model 21:52

    Article  Google Scholar 

  21. Beale TM, Chudzinski MG, Sarwar MG, Taylor MS (2013) Chem Soc Rev 42:1667

    Article  CAS  Google Scholar 

  22. Lim JY, Beer PD (2015) Chem Commun 51:3686

    Article  CAS  Google Scholar 

  23. Langton MJ, Robinson SW, Mar ques I, Felix V, Beer PD (2014) Nat Chem 6:1039

  24. Nagy PI (2012) J Phys Chem A 116:7726

    Article  CAS  Google Scholar 

  25. Martinez-Cifuentes M, Weiss-Lopez BE, Sanos LS, Araya-Maturana R (2014) Molecules 19:9354

    Article  Google Scholar 

  26. Charisiadis P, Kontoqianni VG, Tsiafoulis CG, Tzakos AG, Siskos M, Gerothanassis IP (2014) Molecules 19:13643

    Article  CAS  Google Scholar 

  27. Solha DC, Barbosa TM, Viesser RV, Rittner R, Tormena CF (2014) J Phys Chem A 118:2794

    Article  CAS  Google Scholar 

  28. Nagy PI (2013) J Phys Chem A 117:2812

    Article  CAS  Google Scholar 

  29. Sanchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) Comput Theor Chem 991:124

    Article  CAS  Google Scholar 

  30. Trujillo C, Sanchez-Sanz G, Alkorta I, Elguero J, Mo O, Yanez M (2013) J Mol Struct 1048:138

    Article  CAS  Google Scholar 

  31. Widner DL, Knauf QR, Merucci MT, Fritz TR, Sauer JS, Speetzen ED, Bosch E, Bowling NP (2014) J Org Chem 79:6269

    Article  CAS  Google Scholar 

  32. Thorson RA, Woller GR, Driscoll ZL, Geiger BE, Moss CA, Schlapper AL, Speetzen ED, Bosch E, Erdelyi M, Bowling NP (2015) Eur J Org Chem 8:1685

    Article  Google Scholar 

  33. Palusiak M, Grabowski SJ (2008) Struct Chem 19:5

    Article  CAS  Google Scholar 

  34. Jablonski M (2012) J Phys Chem A 116:3753

    Article  CAS  Google Scholar 

  35. Johansson MP, Swart M (2013) Phys Chem Chem Phys 15:11543

    Article  CAS  Google Scholar 

  36. Murray JS, Concha MC, Politzer P (2011) J Mol Model 17:2151

    Article  CAS  Google Scholar 

  37. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  38. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohena AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  Google Scholar 

  39. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  41. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877

    Article  CAS  Google Scholar 

  42. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian: Wallingford

  44. Biegler-Konig F, Schonbohm J, Bayles D (2001) J Comput Chem 22:545

    Article  Google Scholar 

  45. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  Google Scholar 

  46. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33

    Article  CAS  Google Scholar 

  47. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  48. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  49. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  50. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  51. Grabowski SJ (2000) J Phys Chem A 104:5551

    Article  CAS  Google Scholar 

  52. Alkorta I, Rozas J, Elguero J (1998) J Phys Chem A 102:9278

    Article  CAS  Google Scholar 

  53. Lu YX, Zou JW, Wang YH, Jiang YJ, Yu QS (2007) J Phys Chem A 111:10781

    Article  CAS  Google Scholar 

  54. Lu YX, Zou JW, Wang YH, Yu QS (2006) J Mol Struct Theochem 776:83

    Article  CAS  Google Scholar 

  55. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625

    Article  CAS  Google Scholar 

  56. Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) J Chem Theory Comput 9:3263

    Article  CAS  Google Scholar 

  57. Hashimoto T, Sakata K, Maruoka K (2009) Angew Chem Int Ed 48:5014

    Article  CAS  Google Scholar 

  58. Bee C, Han SB, Hassan A, Lida H, Krische MJ (2008) J Am Chem Soc 130:2746

    Article  CAS  Google Scholar 

  59. Nikiforov VA, Karavan VS, Miltsov SA, Selivanov SI, Kolehmainen E, Wegelius E, Nissinen M (2003) Arkivoc 4:191

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21473054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxiang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, Y., Xu, Z. et al. Intramolecular halogen bonds in 1,2-aryldiyne molecules: a theoretical study. Struct Chem 27, 907–917 (2016). https://doi.org/10.1007/s11224-015-0671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0671-z

Keywords

Navigation