Skip to main content
Log in

Influence of chlorine substituents on the aggregation behavior of chlorobenzoyl-substituted ferrocene derivates

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The influence of chlorine substituents on the molecular arrangement in the solid state of chlorinated benzoyl-ferrocene derivates with restricted molecular flexibility was investigated by crystal structure determinations and theoretical calculations. Four different chlorinated benzoyl-ferrocene derivates were crystallized from a saturated CHCl3 solution and analyzed by X-ray diffraction. Under consideration of the structural restrictions, a comparable trend of rearrangement in the crystal organization with increasing number of chlorine atoms is observed, which is analogous to findings for chlorine-substituted benzenes. More important, the molecules arrange in layers (1 and 4) and columns (2 and 3) and in all cases with repulsively orientated CF3···CF3 substituents. In addition, Cl···Cl interactions are visible in 1 (type I) and 4 (type II). Furthermore, the crystal packing motifs were also analyzed based on ab initio quantum-chemical calculations of the intermolecular interaction energy, using the B97-D3/def2-TZVP method. According to the topology of intermolecular interaction, the crystal structures have either columnar or layered structure depending on the presence of Cl substituent in para-position of benzene ring. It was also found that Cl···Cl interactions play a secondary role in crystal organization, and the substituent effect is maybe due to polarization of the aromatic ring, which leads ultimately to an increase in the energy of stacking interactions between the aryl substituents.

Graphical Abstract

Analysis of the crystal structures of chlorine substituents on the molecular arrangement in the solid state of restricted molecular flexible chlorinated benzoyl-ferrocene derivates shows a trend of rearrangement in the crystal organization with increasing number of chlorine atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Desiraju GR (2001) Nature 412(6845):397–400. doi:10.1038/35086640

    Article  CAS  Google Scholar 

  2. Desiraju GR (1995) Angew Chem Int Ed 34(21):2311–2327. doi:10.1002/anie.199523111

    Article  CAS  Google Scholar 

  3. Merz K, Vasylyeva V (2010) CrystEngComm 12(12):3989–4002. doi:10.1039/C0CE00237B

    Article  CAS  Google Scholar 

  4. Merz K (2006) Cryst Growth Des 6(7):1615–1619. doi:10.1021/cg060067j

    Article  CAS  Google Scholar 

  5. Milledge HJ, Pant LM (1960) Acta Cryst 13(4):285–290. doi:10.1107/S0365110X6000073X

    Article  CAS  Google Scholar 

  6. Boese R, Kirchner MT, Dunitz JD, Filippini G, Gavezzotti A (2001) Helv Chim Acta 84(6):1561–1577. doi:10.1002/1522-2675(20010613)84:6<1561:aid-hlca1561>3.0.co;2-m

    Article  CAS  Google Scholar 

  7. Andre D, Fourme R, Renaud M (1971) Acta Cryst B 27(12):2371–2380. doi:10.1107/S0567740871005909

    Article  CAS  Google Scholar 

  8. Reddy CM, Kirchner MT, Gundakaram RC, Padmanabhan KA, Desiraju GR (2006) Chem Eur J 12(8):2222–2234. doi:10.1002/chem.200500983

    Article  CAS  Google Scholar 

  9. Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) Chem Eur J 12(35):8952–8960. doi:10.1002/chem.200600523

    Article  CAS  Google Scholar 

  10. Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116(11):4910–4918. doi:10.1021/ja00090a041

    Article  CAS  Google Scholar 

  11. Vasylyeva V, Merz K (2010) J Fluor Chem 131(3):446–449. doi:10.1016/j.jfluchem.2009.12.013

    Article  CAS  Google Scholar 

  12. Vasylyeva V, Merz K (2010) Cryst Growth Des 10(10):4250–4255. doi:10.1021/cg100794s

    Article  CAS  Google Scholar 

  13. Vasylyeva V, Shishkin OV, Maleev AV, Merz K (2012) Cryst Growth Des 12(2):1032–1039. doi:10.1021/cg201623e

    Article  CAS  Google Scholar 

  14. Shishkin OV, Shishkina SV, Maleev AV, Zubatyuk RI, Vasylyeva V, Merz K (2013) ChemPhysChem 14(4):847–856. doi:10.1002/cphc.201200581

    Article  CAS  Google Scholar 

  15. Mocilac P, Tallon M, Lough AJ, Gallagher JF (2010) CrystEngComm 12(10):3080–3090. doi:10.1039/c002986f

    Article  CAS  Google Scholar 

  16. Merz K (2003) Acta Cryst C 59(2):o65–o67. doi:10.1107/s0108270102023041

    Article  Google Scholar 

  17. Mocilac P, Lough AJ, Gallagher JF (2011) CrystEngComm 13(6):1899–1909. doi:10.1039/c0ce00326c

    Article  CAS  Google Scholar 

  18. Shishkin OV, Medvediev VV, Zubatyuk RI (2013) CrystEngComm 15(1):160–167. doi:10.1039/c2ce26126j

    Article  CAS  Google Scholar 

  19. Shishkin OV, Zubatyuk RI, Shishkina SV, Dyakonenko VV, Medviediev VV (2014) PCCP 16(14):6773–6786. doi:10.1039/c3cp55390f

    Article  CAS  Google Scholar 

  20. Sheldrick GM (1997) shelxtl-97. University of Göttingen, Germany

    Google Scholar 

  21. Dyakonenko VV, Maleev AV, Zbruyev AI, Chebanov VA, Desenko SM, Shishkin OV (2010) CrystEngComm 12(6):1816–1823. doi:10.1039/b922131j

    Article  CAS  Google Scholar 

  22. Shishkin OV, Dyakonenko VV, Maleev AV (2012) CrystEngComm 14(5):1795–1804. doi:10.1039/c2ce06336k

    Article  CAS  Google Scholar 

  23. Grimme S (2006) J Comput Chem 27(15):1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  24. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32(7):1456–1465. doi:10.1002/jcc.21759

    Article  CAS  Google Scholar 

  25. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys. doi:10.1063/1.3382344

    Google Scholar 

  26. Boys SF, Bernardi F (1970) Mol Phys 19(4):553–566. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  27. Neese F (2012) WIREs Comput Mol Sci 2(1):73–78. doi:10.1002/wcms.81

    Article  CAS  Google Scholar 

  28. Maschke M, Alborzinia H, Lieb M, Wolfl S, Metzler-Nolte N (2014) ChemMedChem 9(6):1188–1194. doi:10.1002/cmdc.201402001

    Article  CAS  Google Scholar 

  29. Biehl ER, Reeves PC (1973) Synthesis. doi:10.1055/s-1973-22216

    Google Scholar 

  30. Desiraju GR, Vittal JJ, Ramanan A (2011) Crystal Engineering: A Textbook. World Scientific Pub Co, Singapore

    Book  Google Scholar 

Download references

Acknowledgments

This research was in part supported by the Research Department “Interfacial Systems Chemistry” at Ruhr University Bochum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Metzler-Nolte.

Additional information

Oleg Valerievich Shishkin: Deceased in July 2014.

This contribution is for the special issue honoring Oleg Shishkin’s memory.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2015_587_MOESM1_ESM.doc

Supporting Information: Table with pairwise strongest interactions in crystal 1-4, calculated energies of dimers of 1, 2, 3, and 4, cif files giving X-ray data with details of refinement procedures for 1-4. CCDC Nos. 1002383 (1), 1002384 (2), 1002385 (3), and 1002386 (4). (DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maschke, M., Merz, K., Shishkin, O.V. et al. Influence of chlorine substituents on the aggregation behavior of chlorobenzoyl-substituted ferrocene derivates. Struct Chem 27, 377–387 (2016). https://doi.org/10.1007/s11224-015-0587-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0587-7

Keywords

Navigation