Skip to main content

Advertisement

Log in

Interaction of molecular hydrogen with alkali and transition metal-doped acetylene complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Comparative study of H2 interaction with Na-acetylene(C2H2Na), K-acetylene(C2H2K), Li-acetylene(C2H2Li), and Ti-acetylene(C2H2Ti) complexes has been carried out using second-order Møller–Plesset method with 6-311 ++G** basis set. The C2H2Na, C2H2K, C2H2Li, and C2H2Ti complexes can adsorb a maximum of six, seven, four, and five hydrogen molecules with H2 uptake capacities of 19.79, 17.81, 19.62, and 12 wt%, respectively. The hydrogen adsorption energies with zero-point energy and Gibbs free energy correction show that hydrogen adsorption on alkali metal-doped acetylene complexes is energetically unfavorable at all temperatures considered here, whereas it is energetically favorable for Ti-acetylene complex. The kinetic stability of these complexes is studied using HOMO–LUMO gap, and some selected vibrational modes in these complexes are also studied. Most of the vibrational modes upon H2 adsorption are red-shifted. Although all the hydrogen-adsorbed complexes are kinetically stable, the H2-adsorbed Ti-acetylene complex is more stable than the H2-adsorbed alkali metal-doped acetylene complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gao H, Wu XB, Li JT, Wu GT, Lin JY, Wu K, Xu DS (2003) Appl Phys Lett 83:3389

    Article  CAS  Google Scholar 

  2. Liu C, Yang QH, Tong Y, Cong HT, Cheng HM (2002) Appl Phys Lett 8:2389

    Article  Google Scholar 

  3. Ferre-Vilaplana A (2005) J Chem Phys 122:214724

    Article  CAS  Google Scholar 

  4. Miao L, Liu HJ, Wen YW, Zhou X, Hu CZ (2008) J Appl Phys 103:016106

    Article  Google Scholar 

  5. Pan H, Feng YP, Lin J (2007) Appl Phys Lett 90:223104

    Article  Google Scholar 

  6. Kim SY, Kim HS, Augustine S, Kang JK (2006) Appl Phys Lett 89:253119

    Article  Google Scholar 

  7. Krasnov PO, Ding F, Singh AK, Yakobson BI (2007) J Phys Chem C 111:17977

    Article  CAS  Google Scholar 

  8. Henwood D, Carey JD (2007) Phy Rev B 75:245413

    Article  Google Scholar 

  9. Yang X, Zhang RQ, Ni J (2009) Phy Rev B 79:075431

    Article  Google Scholar 

  10. Lee H, Ihm J, Cohen ML, Louie SG (2009) Phy Rev B 80:115412

    Article  Google Scholar 

  11. Jhi SH (2006) Phy Rev B 74:155424

    Article  Google Scholar 

  12. Chen Y, Shaw DT, Bai XD, Wang EG, Lund C, Lu WM, Chung DDL (2001) Appl Phys Lett 78:2128

    Article  CAS  Google Scholar 

  13. McAfee JL, Poirier B (2009) J Chem Phys 130:064701

    Article  Google Scholar 

  14. Durugan E, Ciraci S, Yildirim T (2008) Phy Rev B 77:085405

    Article  Google Scholar 

  15. Yildirim T, Iniguez J, Ciraci S (2005) Phy Rev B 72:153403

    Article  Google Scholar 

  16. Shin WH, Yang SH, Goddard WA, Kang JK (2006) Appl Phys Lett 88:053111

    Article  Google Scholar 

  17. Lee JW, Kim HS, Lee JY, Kang JK (2006) Appl Phys Lett 88:143126

    Article  Google Scholar 

  18. Zhao Y, Kim YH, Dillon AC, Heben MJ, Zhang SB (2005) Phy Rev Lett 94:155504

    Article  Google Scholar 

  19. Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z (2008) Phy Rev Lett 100:206806

    Article  Google Scholar 

  20. Lee H, Li J, Zhou G, Duan W, Kim G, Ihm J (2008) Phy Rev B 77:235101

    Article  Google Scholar 

  21. Barajas-Barraza RE, Guirado-Lopez RA (2002) Phy Rev B 66:155426

    Article  Google Scholar 

  22. Sun Q, Wang Q, Jena P (2009) Appl Phys Lett 94:013111

    Article  Google Scholar 

  23. Zhou X, Wu M, Zhou J, Sun Q (2009) Appl Phys Lett 94:103105

    Article  Google Scholar 

  24. Wang XL, Tu JP (2006) Appl Phys Lett 89:064101

    Article  Google Scholar 

  25. Cabria I, Lopez MJ, Alonso JA (2008) J Chem Phys 128:144704

    Article  CAS  Google Scholar 

  26. Lee H, Huang B, Duan W, Ihm J (2010) J Appl Phys 107:084304

    Article  Google Scholar 

  27. Brown CM, Liu Y, Neumann DA (2008) Pramana 71:755

    Article  CAS  Google Scholar 

  28. Suri M, Dornfeld M, Ganz E (2009) J Chem Phys 131:174703

    Article  Google Scholar 

  29. Gomez DA, Combariza AF, Sastre G (2009) Phys Chem Chem Phys 11:9250

    Article  CAS  Google Scholar 

  30. Sagara T, Klassen J, Ortony J, Ganz E (2005) J Chem Phys 123:014701

    Article  Google Scholar 

  31. Rowsell JLC, Yaghi OM (2005) Angew Chem Int Ed 44:4670

    Article  CAS  Google Scholar 

  32. Kong L, Cooper VR, Nijem N, Li K, Li J, Chabal YJ, Langreth DC (2009) Phy Rev B 79:081407

    Article  Google Scholar 

  33. Choi YJ, Lee JW, Choi JH, Kang JK (2008) Appl Phys Lett 92:173102

    Article  Google Scholar 

  34. Yildrium T, Hartman MR (2005) Phy Rev Lett 95:215504

    Article  Google Scholar 

  35. Thomas KM (2009) Dalton Trans 9:1487

    Article  Google Scholar 

  36. Fang B, Zhou H, Honma I (2006) J Chem Phys 124:204718

    Article  Google Scholar 

  37. Li S, Jena P (2008) Phy Rev B 77:193101

    Article  Google Scholar 

  38. Huang B, Lee H, Duan W, Ihm J (2008) Appl Phys Lett 93:063107

    Article  Google Scholar 

  39. Kalamse V, Wadnerkar N, Chaudhari A (2013) Energy 49:469

    Article  CAS  Google Scholar 

  40. Liu CS, Zeng Z (2009) Phy Rev B 79:245419

    Article  Google Scholar 

  41. Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A (2012) Int J Hydrogen Energy 37:3727

    Article  CAS  Google Scholar 

  42. Wadnerkar N, Kalamse V, Phillips AB, Shivaram BS, Chaudhari A (2011) Int J Hydrogen Energy 36:9727

    Article  CAS  Google Scholar 

  43. Durugan E, Ciraci S, Zhou W, Yildirim T (2006) Phy Rev Lett 97:226102

    Article  Google Scholar 

  44. Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A (2012) Int J Hydrogen Energy 37:5114

    Article  CAS  Google Scholar 

  45. Okamoto Y (2008) J Phys Chem C 112:17721

    Article  CAS  Google Scholar 

  46. Wadnerkar N, Kalamse V, Chaudhari A (2010) J Comp Chem 31:1656

    Article  CAS  Google Scholar 

  47. Kiran B, Kandalam AK, Jena P (2006) J Chem Phys 124:224703

    Article  Google Scholar 

  48. Wadnerkar N, Kalamse V, Chaudhari A (2011) Int J Hydrogen Energy 36:664

    Article  CAS  Google Scholar 

  49. Martinez AI (2008) J Nano Res 5:113

    Article  Google Scholar 

  50. Kalamse V, Wadnerkar N, Chaudhari A (2009) Int J Quantum Chem 110:1947

    Google Scholar 

  51. Weck PF, Dhilip Kumar TJ, Kim E, Balakrishnan N (2007) J Chem Phys 126:094703

    Article  Google Scholar 

  52. Wadnerkar N, Kalamse V, Chaudhari A (2013) Struct Chem 24:369

    Article  CAS  Google Scholar 

  53. Niaz S, Manzoor T, Islam N, Pandith AH (2014) Int J Quantum Chem 114:449

    Article  CAS  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT

  55. Hobza P, Zahradnik R (1988) Chem Rev 88:871

    Article  CAS  Google Scholar 

  56. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873

    Article  Google Scholar 

  57. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  58. Valiron P, Mayer I (1997) Chem Phys Lett 275:46

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support from CSIR, New Delhi, India (Grant No. 03(1223)/12/EMR-II) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijayanand Kalamse or Ajay Chaudhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavhare, P., Kalamse, V., Bhosale, R. et al. Interaction of molecular hydrogen with alkali and transition metal-doped acetylene complexes. Struct Chem 26, 823–829 (2015). https://doi.org/10.1007/s11224-014-0547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0547-7

Keywords

Navigation