Skip to main content
Log in

Effect of cooperativity in lithium bonding on the strength of hydrogen bonding: (LiCN) n ···HX (n = 1–5, X = F, Cl) complexes as a working model

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical calculations are performed to analyze effect of cooperativity in lithium bonding on the strength of hydrogen bonding. Molecular geometries and interaction energies of the complexes are investigated using the MP2 method employing 6-311 ++G** basis set. Our results reveal that strength of hydrogen bonding is enhanced due to cooperativity between lithium bonded complexes. Cooperative effects are found when lithium and hydrogen bonds coexist in the title complexes. These effects are studied in terms of structural, energetic, and dipole moment properties of the complexes. The Bader’s theory of atoms in molecules is applied to characterize the interactions and to analyze their enhancement upon the variation of charge density at critical points. A linear correlation was found between the cooperative effect parameter and magnitude of the product of most positive and negative electrostatic potentials (V S, max V S, min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical perspecitive. Oxford University Press, Oxford

    Google Scholar 

  2. Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27:163

    Article  CAS  Google Scholar 

  3. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  4. Latajka Z, Scheiner S (1984) J Chem Phys 81:4014

    Article  CAS  Google Scholar 

  5. Szczesniak MM, Hobza P, Latajka Z, Ratajczak H, Skowronek K (1984) J Phys Chem 88:5923

    Article  CAS  Google Scholar 

  6. Latajka Z, Ratajczak H, Morokuma K, Orville-Thomas WJ (1986) J Mol Struct 146:263

    Article  CAS  Google Scholar 

  7. Bouteiller Y, Latajka Z, Ratajczak H, Scheiner S (1991) J Chem Phys 94:2956

    Article  CAS  Google Scholar 

  8. Salai S, Ammala C, Venuvanalingam P (1998) J Chem Phys 109:9820

    Article  Google Scholar 

  9. Scheiner S, Sapse EAM, Schleyer PR (1995) Recent studies in lithium chemistry: a theoretical and experimental overview. John Wiley & Sons Inc, New York

    Google Scholar 

  10. Shigorin DN (1959) Spectrochim Acta 14:198

    Article  CAS  Google Scholar 

  11. Kollman PA, Liebman JF, Allen LC (1970) J Am Chem Soc 92:1142

    Article  CAS  Google Scholar 

  12. Ault BS, Pimentel GC (1975) J Phys Chem 79:621

  13. Sannigrahi AB, Kar T, Niyogi BG, Hobza P, Schleyer PVR (1990) Chem Rev 90:1061

    Article  CAS  Google Scholar 

  14. Scheiner S (1989) J Mol Struc THEOCHEM 200:117

    Article  Google Scholar 

  15. Esrafili MD, Esmailpour P, Mohammadian-Sabet F, Solimannejad M (2014) Struct Chem 25:1197

    Article  CAS  Google Scholar 

  16. Yin J, Wei P, Li Q, Liu Z, Li W, Cheng J, Gong B (2009) J Mol Struct THEOCHEM 916:28

    Article  CAS  Google Scholar 

  17. Tong J, Li Y, Wu D, Li Z, Huang X (2010) J Phys Chem 114:5888

    Article  CAS  Google Scholar 

  18. Esrafili MD, Esmailpour P, Mohammadian-Sabet F, Solimannejad M (2014) Int J Quantum Chem 114:295

    Article  CAS  Google Scholar 

  19. Esrafili MD, Juyban P, Solimannejad M (2014) Comput Theor Chem 1027:84

    Article  CAS  Google Scholar 

  20. Lipkowski P, Grabowski SJ (2014) Chem Phys Lett 591:113

    Article  CAS  Google Scholar 

  21. Sun WM, Wu D, Li Y, Li ZR (2013) Chem Phys Chem 14:408

    CAS  Google Scholar 

  22. Li Q, Li R, Liu Z, Li W, Cheng J (2011) J Comput Chem 32:3296

    Article  CAS  Google Scholar 

  23. Solimannejad M (2012) Chem Phys Chem 13:3158

    CAS  Google Scholar 

  24. Solimannejad M, Ghafari S, Esrafili MD (2013) Chem Phys Lett 577:6

    Article  CAS  Google Scholar 

  25. Solimannejad M, Rezaei Z, Esrafili MD (2013) J Mol Model 19:5031

    Article  CAS  Google Scholar 

  26. Solimannejad M, Rezaei Z, Esrafili MD (2014) Mol Phys 112:1783

    Article  CAS  Google Scholar 

  27. Esrafili MD, Esmailpour P, Mohammadian-Sabet F, Solimannejad M (2013) Chem Phys Lett 588:47

    Article  CAS  Google Scholar 

  28. Esrafili MD, Fatehi P, Solimannejad M (2013) Comput Theor Chem 1022:115

    Article  CAS  Google Scholar 

  29. Li Q, Hu T, An X, Li W, Cheng J, Gong B, Sun J (2009) ChemPhysChem 10:3310

    Article  CAS  Google Scholar 

  30. Solimannejad M, Bayatmanesh E, Esrafili MD (2014) Phys Chem Res 2:171

    CAS  Google Scholar 

  31. Mehta G, Sen S, Venkatesan K (2005) CrystEngComm 7:398

    Article  CAS  Google Scholar 

  32. Palusiak M, Grabowski SJ (2007) Struct Chem 18:859

    Article  CAS  Google Scholar 

  33. Kar T, Scheiner S (2014) J Phys Chem A 108:9161

    Article  Google Scholar 

  34. Rincon L, Almeida R, Garcia-Aldea D, Riega HD (2001) J Chem Phys 114:5552

    Article  CAS  Google Scholar 

  35. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  36. Parra RD, Bulusu S, Zeng XC (2003) J Chem Phys 118:3499

    Article  CAS  Google Scholar 

  37. Araujo RCMU, Soares VM, Oliveira BG, Lopes KC, Ventura E, Monte SAD, Santana OVL, Carvalho AB, Ramos M (2006) Int J Quantum Chem 106:2714

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision.E01 Gaussian, Inc, Wallingford

  39. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  40. Batsanov SS (2001) Inorg Mater 37:871

    Article  CAS  Google Scholar 

  41. Esrafili MD, Hadipour NL (2011) Mol Phys 109:2451

    Article  CAS  Google Scholar 

  42. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679

    Article  CAS  Google Scholar 

  43. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659

    Article  CAS  Google Scholar 

  44. Riley KE, Hobza P (2008) J Chem Theory Comput 4:232

    Article  CAS  Google Scholar 

  45. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theory Comput 5:155

    Article  CAS  Google Scholar 

  46. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Solimannejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solimannejad, M., Orojloo, M. & Amani, S. Effect of cooperativity in lithium bonding on the strength of hydrogen bonding: (LiCN) n ···HX (n = 1–5, X = F, Cl) complexes as a working model. Struct Chem 26, 793–798 (2015). https://doi.org/10.1007/s11224-014-0539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0539-7

Keywords

Navigation