Skip to main content
Log in

1,2,3- and 1,2,4-Benzenetricarboxylic ligands: investigation of unusual 2D and 3D polymeric nets with potassium ion

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The present work presents a description of two unusual polymeric nets containing potassium (I) and benzenetricarboxylic ligand with formula [K(C9H5O6)·H2O] (1) and [K(C9H5O6)·(H2O)2] (2). Their structures were solved by single crystal X-ray diffraction methods. The structural results suggest that the interactions between carboxylate groups and potassium ion have an ionic character and they are similar for both compounds. The study of the chemical bond between the oxygen and potassium atoms was performed for compound 2 through density functional theory calculations and confirmed that compound 2 is stabilized by ionic interactions, which can be associated analogously to compound 1. The organization of these interactions into crystal packing was investigated by program package TOPOS4.0. It was found that these interactions play an important role in the construction of the 3D and 2D polymeric net for both compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Batten SR, Champness NR, Chen X-M, Garcia-Martinez J, Kitagawa S, Ohrstrom L, O’Keeffe M, Suh MP, Reedijk J (2012) Coordination polymers, metal-organic frameworks and the need for terminology guidelines. CrystEngComm 14(9):3001–3004. doi:10.1039/c2ce06488j

    Article  CAS  Google Scholar 

  2. Wang J, Xu M, Song L, Liu Z (2011) Hydrothermal syntheses and crystal structures of two layered nickel(II) coordination polymers based on 1,2,3-benzenetricarboxylic acid. Chin J Chem 29(8):1606–1612. doi:10.1002/cjoc.201180288

    Article  CAS  Google Scholar 

  3. Chung H-T, Tsai H-L, Yang E-C, Chien P-H, Peng C-C, Huang Y-C, Liu Y-H (2009) A new manganese coordination polymer containing 1,2,4-benzenetricarboxylic acid. Eur J Inorg Chem 24:3661–3666. doi:10.1002/ejic.200900375

    Article  Google Scholar 

  4. Mahata P, Prabu M, Natarajan S (2008) Role of temperature and time in the formation of infinite –M–O–M– Linkages and isolated clusters in MOFs: a few illustrative examples. Inorg Chem 47(19):8451–8463. doi:10.1021/ic800621q

    Article  CAS  Google Scholar 

  5. Riou-Cavellec M, Lesaint C, Noguès M, Grenèche J-M, Férey G (2003) Synthesis, structure, and mössbauer study of [Fe(H2O)2(C9O6H4)]·H2O: a two-dimensional iron(II) trimellitate (MIL-67). Inorg Chem 42(18):5669–5674. doi:10.1021/ic020715y

    Article  CAS  Google Scholar 

  6. do Carmo WR, Franco CHJ, Diniz R (2012) Structural and spectroscopic studies of three novel two- and three-dimensional coordination polymers with benzenetricarboxylate ligands. Inorg Chimica Acta 385:119–127. doi:10.1016/j.ica.2012.01.037

    Article  Google Scholar 

  7. Liu J-Y, Dong M-M, Wang Z-J, Chen H-M, Zang S-Q (2012) Assembly of 1,2,3-benzenetricarboxylic acid and sliver(I) metal center to a novel 3D supramolecular framework: Syntheses, structure and properties. Spectrochim Acta Part A Mol Biomol Spectrosc 89:7–10. doi:10.1016/j.saa.2011.12.042

    Article  CAS  Google Scholar 

  8. Yao J, Lu Z-D, Li Y-Z, Lin J-G, Duan X-Y, Gao S, Meng Q-J, Lu C-S (2008) Three-dimensional metal-organic frameworks constructed from bix and 1,2,4-benzenetricarboxylate. CrystEngComm 10(10):1379–1383. doi:10.1039/b805263h

    Article  CAS  Google Scholar 

  9. Gutschke SOH, Price DJ, Powell AK, Wood PT (2001) Hydrothermal synthesis, structure, and magnetism of [Co2(OH){1,2,3-(O2C)3C6H3}(H2O)]·H2O and [Co2(OH){1,2,3-(O2C)3C6H3}]: magnetic Δ-chains with mixed cobalt geometries. Angew Chem Int Ed 40(10):1920–1923. doi:10.1002/1521-3773(20010518)40:10<1920:aid-anie1920>3.0.co;2-2

    Article  CAS  Google Scholar 

  10. Arif Nadeem M, Thornton AW, Hill MR, Stride JA (2011) A flexible copper based microporous metal-organic framework displaying selective adsorption of hydrogen over nitrogen. Dalton Trans 40(13):3398–3401. doi:10.1039/c0dt01531h

    Article  Google Scholar 

  11. Ma L-F, Li C-P, Wang L-Y, Du M (2011) CoII and ZnII coordination frameworks with benzene-1,2,3-tricarboxylate tecton and flexible dipyridyl co-ligand: a new type of entangled architecture and a unique 4-connected topological network. Cryst Growth Des 11(8):3309–3312. doi:10.1021/cg200366a

    Article  CAS  Google Scholar 

  12. Ashwell GJ (1999) Langmuir–Blodgett films: molecular engineering of non-centrosymmetric structures for second-order nonlinear optical applications. J Mater Chem 9(9):1991–2003. doi:10.1039/a902604e

    Article  CAS  Google Scholar 

  13. Liu C-M, Zuo J-L, Zhang D-Q, Zhu D-B (2008) Carboxylic acid-dependent assembly of neodymium-organic frameworks with attractive topologies and second-order nonlinear optical and/or magnetic properties. CrystEngComm 10(11):1674–1680. doi:10.1039/b811524a

    Article  CAS  Google Scholar 

  14. Batten SR, Neville SM, Turner DR (2009) Coordination polymers design, analysis and application. The Royal Society of Chemistry, Cambridge, UK

  15. Fabelo O, Canadillas-Delgado L, Pasan J, Ruiz-Perez C, Julve M (2006) Influence of the presence of divalent first-row transition metal ions on the structure of sodium(i) salts of 1,2,3,4-benzenetetracarboxylic acid (H4bta). CrystEngComm 8(4):338–345

    Article  CAS  Google Scholar 

  16. Wu G, Feng J-H, Wang X-F (2012) Synthesis, crystal structure, and physical properties of a -barium(II) benzene-1, 2, 3-tricarboxylic acid complex. Zeitschrift für anorganische und allgemeine Chemie 638(6):1047–1052. doi:10.1002/zaac.201100532

    Article  CAS  Google Scholar 

  17. Tran DT, Chu D, Oliver AG, Oliver SRJ (2009) Synthesis and characterization of strontium 1,3,5-benzenetricarboxylate, [Sr3(1,3,5-BTC)2(H2O)4]·H2O. Inorg Chem Commun 12(5):351–354. doi:10.1016/j.inoche.2009.02.004

    Article  CAS  Google Scholar 

  18. Banerjee D, Parise JB (2011) Recent advances in s-block metal carboxylate networks. Cryst Growth Des 11(10):4704–4720. doi:10.1021/cg2008304

    Article  CAS  Google Scholar 

  19. Lee DW, Jo V, Ok KM (2011) Sr2[C6H3(CO2)3(NO3)]·DMF: one-dimensional nano-channel in a new non-centrosymmetric strontium-organic framework with high thermal stability. Cryst Growth Des 11(7):2698–2701. doi:10.1021/cg200503d

    Article  CAS  Google Scholar 

  20. Kim MK, Jo V, Lee DW, Shim I-W, Ok KM (2010) CAU-1 and CAU-2: New tubular alkali metal-organic framework materials, A3[C6H3(CO2)(CO2H0.5)(CO2H)]2 (A = K or Rb). CrystEngComm 12(5):1481–1484. doi:10.1039/b924218j

    Article  CAS  Google Scholar 

  21. Lyszczek R, Mazur L, Rzaczynska Z (2008) A three-dimensional coordination polymer constructed from sodium(I) ion and benzene-1,2,4-tricarboxylate ligand: Thermal, structure and spectroscopic characteristics. Inorg Chem Commun 11(9):1091–1093. doi:10.1016/j.inoche.2008.05.031

    Article  CAS  Google Scholar 

  22. Snejko N, Cascales C, Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, Ruiz-Valero C, Monge MA (2002) From rational octahedron design to reticulation serendipity. A thermally stable rare earth polymeric disulfonate family with CdI2-like structure, bifunctional catalysis and optical properties. Chem Commun 13:1366–1367. doi:10.1039/b202639b

    Article  Google Scholar 

  23. Gándara F, Puebla EG, Iglesias M, Proserpio DM, Snejko N, Monge MÁ (2009) Controlling the structure of arenedisulfonates toward catalytically active materials. Chem Mater 21(4):655–661. doi:10.1021/cm8029517

    Article  Google Scholar 

  24. Duisenberg AJM (1992) Indexing in single-crystal diffractometry with an obstinate list of reflections. J Appl Crystallogr 25:92–96. doi:10.1107/s0021889891010634

    Article  CAS  Google Scholar 

  25. Duisenberg AJM, Kroon-Batenburg LMJ, Schreurs AMM (2003) An intensity evaluation method: EVAL-14. J Appl Crystallogr 36:220–229. doi:10.1107/s0021889802022628

    Article  CAS  Google Scholar 

  26. Sheldrick GM (1997) SHELX97. Programs for crystal structure analysis (Release 97-2). University of Göttingen, Germany

    Google Scholar 

  27. Farrugia L (1997) ORTEP-3 for windows—a version of ORTEP-III with a graphical user interface (GUI). J Appl Crystallogr 30(5 Part 1):565. doi:10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  28. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van De Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457. doi:10.1107/s002188980600731x

    Article  CAS  Google Scholar 

  29. Hohenberg P, Kohn W (1964) Inhomogebeous Electron Gas. Phys Rev B 136:B864

    Article  Google Scholar 

  30. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133

    Article  Google Scholar 

  31. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079. doi:10.1103/PhysRevB.23.5048

    Article  CAS  Google Scholar 

  32. Baroni S, dalCorso A, deGironcoli S, Giannozzi P, Cavazzoni C. http://www.democritos.it

  33. Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D (1993) Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys Rev B 47(16):10142–10153

    Article  CAS  Google Scholar 

  34. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular-systems. J Chem Phys 92(9):5397–5403. doi:10.1063/1.458517

    Article  CAS  Google Scholar 

  35. De Santis L, Resta R (1999) Surface reconstructions and bonding via the electron localization function: the case of Si(001). Solid State Commun 111(10):583–588. doi:10.1016/s0038-1098(99)00138-6

    Article  Google Scholar 

  36. Prince E (2004) International tables for crystallography, volume C, vol C. Mathematical, physical and chemical tables, 3rd edn. Kluver Academic Plublishers, London, UK

  37. Okaya Y (1965) The crystal structure of potassium acid phthalate, KC6H4COOH.COO. Acta Crystallogr A 19(6):879–882. doi:10.1107/S0365110X65004590

    Article  CAS  Google Scholar 

  38. Park JS, Youm K-T, Jun M-J (2002) Copper(II) complexes of 1,3-dithian-2-ylidenemalonate: doubly layered 2D sheet induced by alkali metal ions. Polyhedron 21(12–13):1273–1278. doi:10.1016/S0277-5387(02)01009-4

    Article  CAS  Google Scholar 

  39. Murayama K, Aoki K (1998) Cation-π interactions between potassium ions and aromatic rings. Crystal structures of three potassium complexes of calix[6]arene. Inorg Chimica Acta 281(1):36–42. doi:10.1016/S0020-1693(98)00139-X

    Article  CAS  Google Scholar 

  40. Zoran M, Dalibor B, Ivan G (2004) Geometry and conformation of benzenecarboxylic acids. J Serb Chem Soc 69(11):877–882. doi:10.2298/JSC0411877M

    Article  Google Scholar 

  41. Leiserowitz L (1976) Molecular packing modes. Carboxylic acids. Acta Crystallogr Sect B 32(3):775–802. doi:10.1107/S0567740876003968

    Article  Google Scholar 

  42. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41(1):48–76. doi:10.1002/1521-3773(20020104)41:1<48:aid-anie48>3.0.co;2-u

    Article  CAS  Google Scholar 

  43. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045–1097

    Article  CAS  Google Scholar 

  44. Topos4.0 (2012). http://www.topos.ssu.samara.ru/. Accessed 16-12-2012 2012

  45. Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des 14(7):3576–3586. doi:10.1021/cg500498k

    Article  CAS  Google Scholar 

  46. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The reticular chemistry structure resource (RCSR) database of, and symbols for, Crystal Nets. Acc Chem Res 41(12):1782–1789. doi:10.1021/ar800124u

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Coordination of Improvement of Higher Education Personnel (CAPES), Foundation for Research Support of Minas Gerais (FAPEMIG), and National Council for Scientific and Technological Development (CNPq) (Brazilian agencies) for financial support, and to LDRX (X-ray diffraction laboratory– UFF) and LabCri (Crystallography laboratory—UFMG) for X-ray facilities and CENAPAD-UFMG for computational facility support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Diniz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, C.H.J., do Carmo, W.R., de Almeida, F.B. et al. 1,2,3- and 1,2,4-Benzenetricarboxylic ligands: investigation of unusual 2D and 3D polymeric nets with potassium ion. Struct Chem 26, 773–783 (2015). https://doi.org/10.1007/s11224-014-0537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0537-9

Keywords

Navigation