Skip to main content
Log in

Multi-component hydrogen-bonding organic salts formed from 1-methylpiperazine with aromatic carboxylic acids: Synthons cooperation and crystal structures

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

1-Methylpiperazine was employed to crystallize with 2,4-dihydroxybenzoic acid and 1,8-naphthalene acid, affording two multi-component hydrogen-bonding salts [(C5H14N2)2+·(C7H5O4)2 ·H2O](1) and [(C5H14N2)2+(C12H6O4)2−·2H2O](2). These two forms of salts are both monoclinic systems with space group P21/c(14). The lattice parameters of salts 1 and 2 are a=1.32666(10) nm, b=0.90527(7) nm, c=1.67107(13) nm, β=103.125(1)° and a=1.4950(2) nm, b=0.75242(15) nm, c=1.6563(3) nm, β=92.834(2)°, respectively. Expected classical hydrogen bonds N-H⋯O and O-H⋯O appear in the chargetransfer salts, and asymmetric units of these two forms both contain water molecules which play a significant role in building novel supramolecular architectures. Robust hydrogen-bond interactions between 1-methylpiperazine and aromatic acid provide sufficient driving force to direct the two crystals to three-dimensional structures. Weak interactions C-H⋯O emerging in salts 1 and 2 further enhance their crystal structures. As a consequence, hydrogen-bonding interactions in these compounds afford diverse 3D net supramolecular architectures. Thermal stability of these compounds was investigated by thermogravimetric analysis(TGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan M., Enkelmann V., Brunklaus G., J. Am. Chem. Soc., 2010, 132, 5254

    Article  CAS  Google Scholar 

  2. Wang L., Zhao L., Xu L. Y., Chen R. X., Yang Y., CrystEngComm, 2012, 14, 6998

    Article  CAS  Google Scholar 

  3. Wang L., Zhao L., Liu M., Chen R. X., Yang Y., Gu Y. Y., Sci. China Chem., 2012, 55, 2115

    Article  CAS  Google Scholar 

  4. Wang L., Zhao L., Xue R. Y., Lu X. F., Wen Y. H., Yang Y., Sci. China Chem., 2012, 55, 2515

    Article  CAS  Google Scholar 

  5. Du M., Zhang Z. H., Zhao X. J., Cryst. Growth Des., 2005, 5, 1247

    Article  CAS  Google Scholar 

  6. Desiraju G. R., Chem. Commun., 1997, 16, 1475

    Article  Google Scholar 

  7. Desiraju G. R., Angew. Chem. Int. Ed., 2007, 46, 8342

    Article  CAS  Google Scholar 

  8. Brammer L., Chem. Soc. Rev., 2004, 33, 476

    Article  CAS  Google Scholar 

  9. Wang L., Xu L. Y., Xue R. F., Lu X. F., Chen R. X., Tao X. T., Sci. China Chem., 2012, 55, 138

    Article  CAS  Google Scholar 

  10. Wang L., Zhao L., Hu Y. J., Wang W. Q., Chen R. X., Yang Y., CrystEngComm, 2013, 15, 2835

    Article  CAS  Google Scholar 

  11. Wang L., Hu Y. J., Wang W. Q., Liu F. Q., Huang K. K., CrystEngComm, 2014, 16, 4142

    Article  CAS  Google Scholar 

  12. Hulme A. T., Price S. L., Tocher D. A., J. Am. Chem. Soc., 2005, 127, 1116

    Article  CAS  Google Scholar 

  13. Kitagawa S., Kitaura R., Noro S., Angew. Chem. Int. Ed., 2004, 43, 2334

    Article  CAS  Google Scholar 

  14. Ferey G., Chem. Soc. Rev., 2008, 37, 191

    Article  CAS  Google Scholar 

  15. Trivedi D. R., Ballabh A., Dastidar P., CrystEngComm, 2003, 5, 358

    Article  Google Scholar 

  16. Ward M. D., Chem. Commun, 2005, 48, 5838

    Article  Google Scholar 

  17. Yuge T., Miyata M., Tohnai N., Cryst. Growth Des., 2006, 6, 1271

    Article  CAS  Google Scholar 

  18. AakerÖy C. B., Beatty A. M., Helfrich B. A., J. Am. Chem. Soc., 2002, 124, 14425

    Article  Google Scholar 

  19. Vishweshwar P., Nangia A., Lynch V. M., J. Org. Chem., 2002, 67, 556

    Article  CAS  Google Scholar 

  20. Vishweshwar P., Nangia A., Lynch V. M., Cryst. Growth Des., 2003, 3, 783

    Article  CAS  Google Scholar 

  21. Wang S. H., Hu H. Z., Chen C., Ma R. N., Zhang N., Chem. J. Chinese Universities, 2014, 35(10), 2055

    CAS  Google Scholar 

  22. Guo M. L., Acta Cryst. C., 2004, 60, o690

    Article  Google Scholar 

  23. SAINT Software Reference Manual, Bruker AXS, Madison, WI, 1998

  24. Sheldrick G. M., SHELXTL NT Version 5.1, Program for Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen, 1997

    Google Scholar 

  25. Chen Z. Y., Peng M. X., Chin. J. Chem., 2008, 26, 1555

    Article  CAS  Google Scholar 

  26. Sarma B., Nath N. K., Bhogala B. R., Nangia A., Cryst. Growth Des., 2009, 9, 1546

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Supported by the National Natural Science Foundation of China(Nos.51372125, 21203106), the Fund of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, China(No.2013-34), and the Scientific and Technical Development Project of Qingdao City, China(No.13-1-4-184-jch).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xu, W., Hu, Y. et al. Multi-component hydrogen-bonding organic salts formed from 1-methylpiperazine with aromatic carboxylic acids: Synthons cooperation and crystal structures. Chem. Res. Chin. Univ. 31, 9–15 (2015). https://doi.org/10.1007/s40242-015-4304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-4304-2

Keywords

Navigation