Skip to main content
Log in

How structural parameters affect the reactivity of saturated and non-saturated nitrogen-doped single-walled carbon nanotubes of different chiralities: a density functional theory approach

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Nitrogen-containing carbon nanotubes, or N-CNTs, are a class of materials with interesting catalytic properties and with less toxic properties than bare carbon nanotubes. Herein, the relative stability, the oxidation potential, conductivity, and structural characteristics of finite, open H-terminated single-walled N-CNTs and their saturated structures are investigated by density functional theory methods at the B3LYP/6-31G(d) level of theory. The principal aim is to understand the way different structural features can determine or modify N-CNTs properties and reactivity. Frequency calculations indicate that all of the final optimized nanostructures correspond to a minimum on the potential energy surface. The formation energies, band gaps, atomic charges, and reactivity descriptors such as chemical potential, hardness, electrophilicity index, and softness are compared. The results indicate that changes in hybridization, chirality, and diameter strongly modify the properties of N-CNTs. The nitrogen content and the length of the nanotubes also contribute to changes in their properties, albeit to a lesser degree. For instance, a (8,0) zigzag N-CNT with 4 nitrogen atoms exhibits a band gap of 0 eV. Moreover, the configuration or relative positions of the nitrogen atoms in the central part of the nanotube do not significantly affect the nanotube properties. Compared with zigzag and chiral nanotubes, armchair N-CNTs exhibit a favorable electrical charge distribution and are revealed as potentially good catalysts for oxygen reduction reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoosefian M, Barzgari Z, Yoosefian J (2014) Struct Chem 25(1):9

    Article  CAS  Google Scholar 

  2. Abdelhalim A, Abdellah A, Scarpa G, Lugli P (2014) Nanotechnol 25(5):5208. doi:10.1088/0957-4484/25/5/055208

    Article  Google Scholar 

  3. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Science 339:535

    Article  Google Scholar 

  4. Bareket-Keren L, Hanein Y (2013) Front Neural Circuits 6:112. doi:10.3389/fncir.2012.00122

    Article  Google Scholar 

  5. Bianco S (2011) Carbon Nanotubes. From Research to Applications, Intech, Croatia

    Google Scholar 

  6. Marulanda JM (2010) Carbon Nanotubes. In-The, India

  7. Chełmecka E, Pasterny K, Kupka T, Stobin L (2011) Phys Status Solidi A 208(8):1774. doi:10.1002/pssa.201001113

    Article  Google Scholar 

  8. Li H, Kim I (2011) In: Bianco S (ed) Carbon Nanotubes. From Research to Applications, chap 13. Intech, p 211

  9. Liu Z, Tabakman S, Welsher K, Dai H (2009) Nano Res 2:85. doi:10.1007/s12274-009-9009-8

    Article  CAS  Google Scholar 

  10. Contreras ML, Avila D, Alvarez J, Rozas R (2010) Struct Chem 21(3):573

    Article  CAS  Google Scholar 

  11. Liu R, Wu D, Feng X, Mullen K (2010) Angew Chem Int Ed 49:2565

    Article  CAS  Google Scholar 

  12. Hu X, Zhou Z, Lin Q, Wu Y, Zhang Z (2011) Chem Phys Lett 503:287

    Article  CAS  Google Scholar 

  13. Gong KP, Du ZH, Xia ZH, Durstock M, Dai LM (2009) Science 323(5915):760

    Article  CAS  Google Scholar 

  14. Terrones M (2007) Acta Microscopica 16(2):33

    Google Scholar 

  15. Hamadanian M, Khoshnevisan B, Fotooh FK (2011) Struct Chem 22:1205. doi:10.1007/s11224-011-9814-z

    Article  CAS  Google Scholar 

  16. Bilic A, Gale JD (2008) J Phys Chem C 112:12568

    Article  CAS  Google Scholar 

  17. Dinadayalane TC, Kaczmarek A, Lukaszewicz J, Leszczynski J (2007) J Phys Chem C 111:7376

    Article  CAS  Google Scholar 

  18. Contreras ML, Cortés-Arriagada D, Villarroel I, Alvarez J, Rozas R (2014) Struct Chem 25:1045. doi:10.1007/s11224-013-0377-z

    Article  CAS  Google Scholar 

  19. Karachi N, Boshra A, Jadidi S (2011) Struct Chem 22:805. doi:10.1007/s11224-011-9761-8

    Article  CAS  Google Scholar 

  20. Baei MT, Peyghan AA, Moghimi M (2012) Monatsh Chem. doi:10.1007/s00706-012-0739-z

    Google Scholar 

  21. Contreras ML, Avila D, Alvarez J, Rozas R (2012) J Mol Graphs Mod 38:389

    Article  Google Scholar 

  22. HyperChem release 7.5 Hypercube Inc 1115 NW 4th Street Gainesville Florida 32601 USA

  23. Jaguar version 7.5 Schrödinger LLC New York NY 2008

  24. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  25. Pearson RG (1997) Chemical hardness. Wiley, Oxford

    Book  Google Scholar 

  26. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  27. Parr RG, von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  28. Koopmans TA (1933) Physica 1:104

    Article  CAS  Google Scholar 

  29. Roy KK, Saha S (2010) Annu Rep Prog Chem. Sect C 106:118

    CAS  Google Scholar 

  30. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  31. Pearson RG (1987) J Phys Chem Educ 64:561

    Article  CAS  Google Scholar 

  32. Toro-Labbé A (1999) J Phys Chem A 103:4398

    Article  Google Scholar 

  33. Gómez-Jeria JS (2013) Canadian Chem Trans 1:25

    Article  Google Scholar 

  34. Dinadayalane TC, Leszczynski J (2010) Struct Chem 21:1155

    Article  CAS  Google Scholar 

  35. Zhao M, Xia Y, Lewis JP, Zhang RJ (2003) Appl Phys 94:2398

    Article  CAS  Google Scholar 

  36. Ho YW, Suen MC (2013) J Chem 2013:765243. doi:10.1155/2013/765243

    Google Scholar 

  37. Jin JC, Sun ZH, Yang MY, Wu J, Liu XH (2013) J Chem 2013:521757. doi:10.1155/2013/521757

    Google Scholar 

  38. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  39. Xiong W, Du F, Liu Y, Perez A Jr, Supp M, Ramakrishnan TS, Dai L, Jiang L (2010) J Am Chem Soc 132:15839

    Article  CAS  Google Scholar 

  40. Jaque P, Toro-Labbé A (2000) J Phys Chem A 104:995

    Article  CAS  Google Scholar 

  41. Chattaraj PK, Fuentealba P, Gómez B, Contreras R (2000) J Am Chem Soc 122:348

    Article  CAS  Google Scholar 

  42. Solà M, Toro-Labbé A (1999) J Phys Chem A 103:8847

    Article  Google Scholar 

  43. Sicilia E, Russo N, Mineva T (2001) J Phys Chem A 105:442

    Article  CAS  Google Scholar 

  44. Torrent-Sucarrat M, Luis JM, Duran M, Solà M (2001) J Am Chem Soc 123:7951

    Article  CAS  Google Scholar 

  45. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) Chem Phys Lett 541:85

    Article  CAS  Google Scholar 

  46. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) J Phys Chem C 116:22399

    Article  CAS  Google Scholar 

  47. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2013) Chem Phys Lett 565:69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Direction of Scientific and Technological Research DICYT-USACH Project Nr. 061342CF and by the Sociedad de Desarrollo Tecnológico SDT-USACH project Nr. CIA 2981. In addition, the central cluster of the Faculty of Chemistry and Biology and the VRIDeI of the University of Santiago de Chile are acknowledged for allocating computational resources.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Leonor Contreras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, M.L., Villarroel, I. & Rozas, R. How structural parameters affect the reactivity of saturated and non-saturated nitrogen-doped single-walled carbon nanotubes of different chiralities: a density functional theory approach. Struct Chem 26, 761–771 (2015). https://doi.org/10.1007/s11224-014-0535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0535-y

Keywords

Navigation